Tổng quan về ứng dụng của thiết bị bay không người lái trong canh tác trên đồng ruộng
Các tác giả
DOI: https://doi.org/10.55250/Jo.vnuf.13.2.2024.112-122Từ khóa:
Chỉ tiêu thực vật, lập bản đồ canh tác, theo dõi cây trồng, thiết bị bay không người lái, ước tính sản lượngTài liệu tham khảo
. Ehrlich P. R. & Harte J. (2015). Opinion: To feed the world in 2050 will require a global revolution. Proc Natl Acad Sci U S A. 112(48): 14743-14744.
. Shi J., An G., Weber A. P. M. & Zhang D. (2023). Prospects for rice in 2050. Plant Cell Environ. 46(4): 1037-1045.
. Navarro E., Costa N. & Pereira A. (2020). A systematic review of IoT solutions for smart farming. Sensors. 20(15): 4231.
. Ahmed M. A., Gallardo J. L., Zuniga M. D., Pedraza M. A., Carvajal G., Jara N. & Carvajal R. (2022). LoRa based IoT platform for remote monitoring of large-scale agriculture farms in Chile. Sensors. 22(8): 2824.
. Jin D., Yin H., Zheng R., Yoo S. J. & Gu Y. H. (2023). PlantInfoCMS: Scalable plant disease information collection and management system for training AI models. Sensors. 23(11): 5032.
. Ivezić A., Trudić B., Stamenković Z., Kuzmanović B., Perić S., Ivošević B., Buđen M. & Petrović K. (2023). Drone-related agrotechnologies for precise plant protection in Western Balkans: Applications, possibilities, and legal framework limitations. Agronomy. 13(10): 2615.
. Tetila E., Machado B., Astolfi G., Belete N., Amorim W., Roel A. & Pistori H. (2020). Detection and classification of soybean pests using deep learning with UAV images. Comput Electron Agric. 179(1): 105836.
. Kerkech M., Hafiane A. & Canals R. (2020). Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Comput Electron Agric. 174(1): 105446.
. Liu Y., Nie C., Zhang Z., Wang Z., Ming B., Xue J., Meng L., Cui N., Wu W. & Jin X. (2022). Evaluating how lodging affects maize yield estimation based on UAV observations. Front Plant Sci. 13(1): 979103.
. Baykalov P., Bussmann B., Nair R., Smith A. G., Bodner G., Hadar O., Lazarovitch N. & Rewald B. (2023). Semantic segmentation of plant roots from RGB (mini-) rhizotron images-generalisation potential and false positives of established methods and advanced deep-learning models. Plant Methods. 19(1): 122.
. Fu Z., Jiang J., Gao Y., Krienke B., Wang M., Zhong K., Zhu Y., Cao W. & Liu X. (2020). Wheat growth monitoring and yield estimation based on multi-rotor unmanned aerial vehicle. Remote Sensing. 12(3): 508.
. Hernandez A., Murcia H., Copot C. & De Keyser R. (2015). Towards the development of a smart flying sensor: illustration in the field of precision agriculture. Sensors. 15(7): 16688-16709.
. Christiansen M. P., Laursen M. S., Jorgensen R. N., Skovsen S. & Gislum R. (2017). Designing and testing a UAV mapping system for agricultural field surveying. Sensors. 17(12).
. Wang T., Liu Y., Wang M., Fan Q., Tian H., Qiao X. & Li Y. (2021). Applications of UAS in crop biomass monitoring: A review. Front Plant Sci. 12(1): 616689.
. Kim J., Kim S., Ju C. & Son H. I. (2019). Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications. IEEE Access. 7(1): 105100-105115.
. Panday U., Pratihast A., Aryal J. & Kayastha R. (2020). A review on drone-based data solutions for cereal crops. Drones. 4(3): 41.
. Su X., Wang J., Ding L., Lu J., Zhang J., Yao X., Cheng T., Zhu Y., Cao W. & Tian Y. (2023). Grain yield prediction using multi-temporal UAV-based multispectral vegetation indices and endmember abundance in rice. Field Crops Research. 299: 108992.
. Tunca E., Köksal E. S., Çetin S., Ekiz N. M. & Balde H. (2018). Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Environ Monit Assess. 190(11): 682.
. Ninkov A., Frank J. R. & Maggio L. A. (2022). Bibliometrics: Methods for studying academic publishing. Perspect Med Educ. 11(3): 173-176.
. Bouguettaya A., Zarzour H., Kechida A. & Taberkit A. M. (2023). A survey on deep learning-based identification of plant and crop diseases from UAV-based aerial images. Cluster Comput. 26(2): 1297-1317.
. Allred B., Eash N., Freeland R., Martinez L. & Wishart D. (2018). Effective and efficient agricultural drainage pipe mapping with UAS thermal infrared imagery: A case study. Agric Water Manag. 197(1): 132-137.
. Zhang C., Atkinson M., George C., Wen Z., Diazgranados M. & Gerard F. (2020). Identifying and mapping individual plants in a highly diverse high-elevation ecosystem using UAV imagery and deep learning. ISPRS J Photogramm Remote Sens. 169(1): 280-291.
. Zhao Y., Ma J., Li X. & Zhang J. (2018). Saliency detection and deep learning-based wildfire identification in UAV imagery. Sensors. 18(3): 712.
. Zhu W., Rezaei E., Nouri H., Sun Z., Li J., Yu D. & Siebert S. (2022). UAV-based indicators of crop growth are robust for distinct water and nutrient management but vary between crop development phases. Field Crops Research. 284(1): 108582.
. Sousa J. J., Toscano P., Matese A., Di Gennaro S. F., Berton A., Gatti M., Poni S., Padua L., Hruska J., Morais R. & Peres E. (2022). UAV-based hyperspectral monitoring using push-broom and snapshot sensors: A multisite assessment for precision viticulture applications. Sensors. 22(17): 6574.
. Ye H., Huang W., Huang S., Cui B., Dong Y., Guo A., Ren Y. & Jin Y. (2020). Recognition of banana Fusarium wilt based on UAV remote sensing. Remote Sensing. 12(6): 938.
. Li B., Xu X., Zhang Li, Han Jiwan, Bian Chunsong, Li Guangcun, Liu Jiangang & Jin Liping (2020). Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J Photogramm Remote Sens. 162(1): 161-172.
. Blasch G., Anberbir T., Negash T., Tilahun L., Belayineh F. Y., Alemayehu Y., Mamo G., Hodson D. P. & Rodrigues F. A., Jr. (2023). The potential of UAV and very high-resolution satellite imagery for yellow and stem rust detection and phenotyping in Ethiopia. Sci Rep. 13(1): 16768.
. Subramanian K. S., Pazhanivelan S., Srinivasan G., Santhi R. & Sathiah N. (2021). Drones in insect pest management. Front Agron. 3(1): 640885.
. Cao Y., Li G., & Zhang S. (2020). Monitoring of sugar beet growth indicators using wide-dynamic-range vegetation index (WDRVI) derived from UAV multispectral images. Comput Electron Agric. 171(1): 105331.
. Johansen K., Morton J. L., Malbeteau Y., Aragon B., Al-Mashharawi S., Ziliani G., Angel Y., Fiene G., Negrão S., Mousa A. A., Tester A. & McCabe F. (2020). Predicting biomass and yield in a tomato phenotyping experiment using UAV imagery and random forest. Front Artif Intell. 3(1): 28.
. Strzepek K., Salach M., Trybus B., Siwiec K., Pawlowicz B. & Paszkiewicz A. (2023). Quantitative and qualitative analysis of agricultural fields based on aerial multispectral images using neural networks. Sensors. 23(22): 9251.
. lost F. H., Heldens B., Kong Z. & de Lange S. (2020). Drones: Innovative technology for use in precision pest management. J Econ Entomol. 113(1): 1-25.
. Pan Z., Lie D., Qiang L., Shaolan H., Shilai Y., Yan-de L., Yongxu Y. & Haiyang P. (2016). Effects of citrus tree-shape and spraying height of small unmanned aerial vehicle on droplet distribution. Int J Agricult Biol Eng. 9(1): 45-52.
. Meng Y., Su J., Song J., Chen W. & Lan Y. (2020). Experimental evaluation of UAV spraying for peach trees of different shapes: Effects of operational parameters on droplet distribution. Comput Electron Agric. 170(1): 105282.
. Hassan M. A., Yang M., Rasheed A., Yang G., Reynolds M., Xia X., Xiao Y. & He Z. (2019). A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Sci. 282(1): 95-103.
. Comba L., Biglia A., Ricauda Aimonino D., Tortia C., Mania E., Guidoni S. & Gay P. (2020). Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery. Precision Agriculture. 21(4): 881-896.
. Zhang H., Ge Y., Xie X., Atefi A., Wijewardane N. K. & Thapa S. (2022). High throughput analysis of leaf chlorophyll content in sorghum using RGB, hyperspectral, and fluorescence imaging and sensor fusion. Plant Methods. 18(1): 60.
. Alordzinu K. E., Li J., Lan Y., Appiah S. A., Al Aasmi A., Wang H., Liao J., Sam-Amoah L. K. & Qiao S. (2021). Ground-based hyperspectral remote sensing for estimating water stress in tomato growth in sandy loam and silty loam soils. Sensors. 21(17): 5705.
. Meng Y., Zhong W., Liu C., Su J., Su J., Lan Y., Wang Z. & Wang M. (2022). UAV spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution. PeerJ. 10(1): e13064.
. Chen P., Douzals J. P., Lan Y., Cotteux E., Delpuech X., Pouxviel G. & Zhan Y. (2022). Characteristics of unmanned aerial spraying systems and related spray drift: A review. Front Plant Sci. 13(1): 870956.
. Khan S., Tufail M., Khan M. T., Khan Z. A., Iqbal J. & Wasim A. (2021). Real-time recognition of spraying area for UAV sprayers using a deep learning approach. PLoS One. 16(4): e0249436.
. Gašparović M., Zrinjski M., Barković D. & Radočaj D. (2020). An automatic method for weed mapping in oat fields based on UAV imagery. Comput Electron Agric. 173: 105385.
. Hassan S. I., Alam M. M., Zia M. Y. I., Rashid M., Illahi U. & Su'ud M. M. (2022). Rice crop counting using aerial imagery and GIS for the assessment of soil health to increase crop yield. Sensors. 22(21): 8567.
. Khater E. G., Ali S. A., Afify M. T., Bayomy M. A. & Abbas R. S. (2022). Using of geographic information systems (GIS) to determine the suitable site for collecting agricultural residues. Sci Rep. 12(1): 14567.
. Barrile V., Simonetti S., Citroni R., Fotia A. & Bilotta G. (2022). Experimenting agriculture 4.0 with sensors: A data fusion approach between remote sensing, UAVs and self-driving tractors. Sensors. 22(20): 7910.
. Pearse Grant D., Tan Alan Y. S., Watt Michael S., Franz Matthias O. & Dash Jonathan P. (2020). Detecting and mapping tree seedlings in UAV imagery using convolutional neural networks and field-verified data. ISPRS J Photogramm Remote Sens. 168(1): 156-169.
. Schiefer F., Kattenborn T., Frick A., Frey J., Schall P., Koch B. & Schmidtlein S. (2020). Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks. ISPRS J Photogramm Remote Sens. 170(1): 205-215.
. Perich G., Hund A., Anderegg J., Roth L., Boer M. P., Walter A., Liebisch F. & Aasen H. (2020). Assessment of multi-image unmanned aerial vehicle based high-throughput field phenotyping of canopy temperature. Front Plant Sci. 11(1): 150.
. Sun C., Feng L., Zhang Z., Ma Y., Crosby T., Naber M. & Wang Y. (2020). Prediction of end-of-season tuber yield and tuber set in potatoes using in-season UAV-based hyperspectral imagery and machine learning. Sensors. 20(18): 5293.
. Torres-Sánchez J., Peña J., de Castro A. & López F. (2014). Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput Electron Agric. 103(1): 104-113.
. Yang T., Zhou S., Xu A., Ye J. & Yin J. (2023). An approach for plant leaf image segmentation based on YOLOV8 and the improved DEEPLABV3. Plants. 12(19): 3438.
. Ma X., Deng X., Qi L., Jiang Y., Li H., Wang Y. & Xing X. (2019). Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields. PLoS One. 14(4): e0215676.
. Sapoukhina N., Boureau T. & Rousseau D. (2022). Plant disease symptom segmentation in chlorophyll fluorescence imaging with a synthetic dataset. Front Plant Sci. 13(1): 969205.
. Ding R., Luo J., Wang C., Yu L., Yang J., Wang M., Zhong S. & Gu R. (2023). Identifying and mapping individual medicinal plant Lamiophlomis rotata at high elevations by using unmanned aerial vehicles and deep learning. Plant Methods. 19(1): 38.
. Aslan M., Durdu A., Sabanci K., Ropelewska E. & Gültekin S. (2022). A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses. Applied Sciences. 12(3): 1047.
. Zhang M., Zhou J., Sudduth A. & Kitchen R. (2020). Estimation of maize yield and effects of variable-rate nitrogen application using UAV-based RGB imagery. Biosystems Eng. 189(1): 24-35.
. Ashapure A., Jung J., Chang A., Oh S., Yeom J., Maeda M., Maeda A., Dube N., Landivar J., Hague S. & Smith W. (2020). Developing a machine learning based cotton yield estimation framework using multi-temporal UAS data. ISPRS J Photogramm Remote Sens. 169(1): 180-194.
. Zheng J., Fu H., Li W., Wu W., Yu L., Yuan S., Tao W., Pang T. & Kanniah K. (2021). Growing status observation for oil palm trees using Unmanned Aerial Vehicle (UAV) images. ISPRS J Photogramm Remote Sens. 173(1): 95-121.
. Gomez S., Vergara A., Montenegro F., Alonso R., Safari N., Raymaekers D., Ocimati W., Ntamwira J., Tits L., Omondi A. & Blomme G. (2020). Detection of banana plants and their major diseases through aerial images and machine learning methods: A case study in DR Congo and Republic of Benin. ISPRS J Photogramm Remote Sens. 169(1): 110-124.
. Johansen K., Duan Q., Tu H., Searle C., Wu D., Phinn S., Robson A. & McCabe F. (2020). Mapping the condition of macadamia tree crops using multi-spectral UAV and WorldView-3 imagery. ISPRS J Photogramm Remote Sens. 165(1): 28-40.
. Faiçal S., Freitas H., Gomes H., Mano Y., Pessin G., de Carvalho F., Krishnamachari B. & Ueyama J. (2017). An adaptive approach for UAV-based pesticide spraying in dynamic environments. Comput Electron Agric. 138(1): 210-223.
. Ahmed F., Al-Mamun H., Bari A. S. M., Hossain E. & Kwan P. (2012). Classification of crops and weeds from digital images: A support vector machine approach. Crop Protection. 40(1): 98-104.
. Hung C., Xu Z. & Sukkarieh S. (2014). Feature learning based approach for weed classification using high resolution aerial images from a digital camera mounted on a UAV. Remote Sensing. 6(12): 12037-12054.
. Park S., Lee H. & Chon J. (2019). Sustainable monitoring coverage of unmanned aerial vehicle photogrammetry according to wing type and image resolution. Environmental Pollution. 247(1): 340-348.
. Erdelj M., Saif O., Natalizio E. & Fantoni I. (2019). UAVs that fly forever: Uninterrupted structural inspection through automatic UAV replacement. Ad Hoc Networks. 94(1): 101612.
. Ju C. & Son H. I. (2018). Multiple UAV systems for agricultural applications: Control, implementation, and evaluation. Electronics. 7(9): 162.
. Shi Q., Liu D., Mao H., Shen B., Liu X. & Ou M. (2019). Study on assistant pollination of facility tomato by UAV. 2019 ASABE Annual International Meeting. 1.
. Roldán J., Joossen G., Sanz D., Del Cerro J. & Barrientos A. (2015). Mini-UAV based sensory system for measuring environmental variables in greenhouses. Sensors. 15(2): 3334-3350.
Tải xuống
Tải xuống: 350