Nuôi cấy quả thể Đông trùng hạ thảo (Cordyceps militaris) trên cơ chất rắn bổ sung vi tảo
Các tác giả
DOI: https://doi.org/10.55250/Jo.vnuf.13.6.2024.020-027Từ khóa:
Cordyceps militaris, cơ chất rắn, đông trùng hạ thảo, tảo lục, tảo xoắnTài liệu tham khảo
. Wang GD. (1995). Ecology, cultication, and application of Cordyceps and Cordyceps sinesis. Scientific and Technical Document, Beijing
. Sung J. M. (1996). The insect-born fungus of Korea in color. Kyo-Hak Pub. Co., Seoul. Korea.
. Li C. R., Nam S. H., Geng D. G., Fan M. Z. & Li Z. Z. (2006). Artificial culture of seventeen Cordyceps spp. Mycosystema. 25(4): 639-645.
. Shonkor K. D., Shinya F., Mina M. & Akihiko S. (2010). Efficient Production of Anticancer Agent Cordycepin by Repeated Batch Culture of Cordyceps militaris Mutant. Lecture Notes in Engineering and Computer Science. 20-22.
. Singpoonga N., Sang-on B. & Chaiprasart P. (2020). Effects of culture periods on fruiting body formation and bioactive compounds production of Cordyceps militaris. Acta Horticulturae.1287: 345-352. DOI: 10.17660/ActaHortic.2020.1287.44
. Rózsa S., Dănuț M.N., Gocan T.M., Sima R. & Andreica I. (2017). Agaricus blazei Murrill mushroom compost study anaerobic and aerobic phases. Current Trends in Natural Sciences. 6(12): 75-82.
. Rózsa S., Dănuț M.N., Poșta G., Gocan Tincuța- Marta, Andreica I., Bogdan I., Rózsa M. & Lazăr V. (2019). Influence of the culture substrate on the Agaricus blazei Murrill mushrooms vitamins content. Plants. 8: 316.
DOI: 10.3390/plants8090316
. Melinda R., Manlutiu D. N. & Apahidean I. A. (2022). Influence of culture substrate pH on Cordyceps militaris mushroom adenosine content, grown on different solid substrates. Journal of Horticulture, Forestry and Biotechnology. 26(3): 95-100.
. Thomas L., Larroche C. & Pandey A. 2013. Current development in solid-state fermentation. Biochemical. Engineering Journal. 81:146-161.
DOI: 10.1016/j.bej.2013.10.013
. Choi G.S., Shin Y.S., Kim J.E., Ye Y.M. & Park H.S. (2010). Five cases of food allergy to vegetable larva (Cordyceps sinensis) showing cross‐ reactivity with silkworm pupae. Allergy. 65(9): 1196-1197.
DOI: 10.1111/j.1398-9995.2009.02300.x
. Kim S.W., Xu C.P., Hwang H.J., Choi J.W., Kim C.W. & Yun J.W. (2003). Production and characterization of exopolysaccharides from an enthomopatho- genic fungus Cordyceps militaris NG3. Biotechnol Prog. 19: 428–35.
DOI: 10.1021/bp025644k
. Park J.P., Kim S.W., Hwang H.J. & Yun J.W. (2001). Optimization of submerged culture conditions for the mycelial growth and exo-biopolymer pro- duction by Cordyceps militaris. Lett App Microb. 33:76-81.
DOI: 10.1046/j.1472-765x.2001.00950.x
. Kaewkam A., Sornchai P., Chanprame S. & Iamtham S. (2021). Utilization of Spirulina maxima to enhance yield and cordycepin content in Cordyceps militaris artificial cultivation.ISSAAA Philippines Journal. 27(1): 1-14.
. Andrade L. M., Andrade C. J., Dias M., Nascimento C., & Mendes M. A. (2018). Chlorella and spirulina microalgae as sources of functional foods. Nutraceuticals, and Food Supplements. 6(1): 45-58. DOI: 10.15406/mojfpt.2018.06.00144
. Mišurcová L., Buňka F., Vávra A.J., Machů L. & Samek D. (2014). Amino acid composition of algal products and its contribution to RDI. Food Chem. 151: 120-125. DOI: 10.1016/j.foodchem.2013.11.040
. Jeske M., Trentini A.M. & Bontempo M. (2011). Clorela, o alimento completo, Compêndio de Fitoterapia. Manual da Medicina Integral. 1- 2.
. Mai Hải Châu & Đặng Thị Ngọc (2022). Xác định môi trường nhân giống và nuôi tạo quả thể nấm Đông trùng hạ thảo (Cordycep militaris) theo hướng hữu cơ. Tạp chí Khoa học và Công nghệ Lâm nghiệp. 2: 3-13. DOI: https://doi.org/10.55250/jo.vnuf.2022.2.003-013
. Iamtham S., Kaewkam A., Chanprame S. & Pan-utai W. (2022). Effect of Spirulina biomass residue on yield and cordycepin and adenosine production of Cordyceps militaris culture. Bioresource Technology Reports. 17: 100893.
DOI: https://doi.org/10.1016/j.biteb.2021.100893
. Muys M., Sui Y., Schwaiger B., Lesueur C., Vandenheuvel D., Vermeir P. & Vlaeminck S. E. (2019). High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresource Technology. 275: 247-257.
DOI: https://doi.org/10.1016/j.biortech.2018.12.059
. Ravindran B., Gupta S. K., Cho W., Kim J., Lee S., Jeong K. & Choi H. (2016). Microalgae potential and multiple roles-current progress and future prospects - an overview. Sustainability. 8(12):1215.
DOI: https://doi.org/10.3390/su8121215
. Hidenori Shimamatsu (2004). Mass production of Spirulina, an edible microalga. Hydrobiologia. 512: 39–44.
. Stephen Mackay (2015). Assisted flocculation of Chlorella Sorokiniana by co-culture with filamentous fungi. Philosophiae Doctor - PhD (Biodiversity and Conservation Biology). University of the Western Cape.
. Dang H.N., Wang C.L. & Lay H.L. (2018). Effect of nutrition, vitamin, grains, and temperature on the mycelium growth and antioxidant capacity of Cordyceps militaris (strains AG-1 and PSJ-1). Journal of Radiation Research and Applied Sciences. 11(2): 130–138.
Tải xuống
Tải xuống: 86