Phylogenetic diversity patterns of woody species across different tree sizes and spatial scales in a tropical forest community on Con Dao Islands


Authors

  • Nguyen Van Quy Russia Tropical Science and Technology Research Center-Southern Branch of Joint Vietnam
  • Vu Manh Russia Tropical Science and Technology Research Center-Southern Branch of Joint Vietnam
  • Doan Tuan Minh Thanh Forestry Project Management Board - Ministry of Agriculture and Rural Development
  • Nguyen Thi Van Russia Tropical Science and Technology Research Center-Southern Branch of Joint Vietnam
  • Nguyen Trung Duc Russia Tropical Science and Technology Research Center-Southern Branch of Joint Vietnam
  • Nguyen Hong Hai Vietnam National University of Forestry
DOI: https://doi.org/10.55250/Jo.vnuf.9.1.2024.042-053

Keywords:

density dependence, evergreen forest, neutral theory, phylogenetic structure, species coexistence

Abstract

Understanding the maintenance of diversity and the assembly of communities is a primary concern in community ecology. This study explored the phylogenetic structure of an evergreen broadleaved tree community in Con Dao National Park, Vietnam. The survey, conducted in December 2023, encompassed all tree individuals with a diameter at breast height (DBH) ≥ 2.5 cm within a 4-ha study plot. These individuals were identified by species name, and their DBH was measured. Subsequently, a community phylogenetic tree was constructed using the Phylomatic online platform. The 4-ha study plot was subdivided into there different subplots based on three spatial scales (25 m × 25 m, 50 m × 50 m, and 100 m × 100 m) and all trees were classified into three different DBH classes (2.5 cm ≤ DBH < 10 cm representing small trees; 10 cm ≤ DBH < 20 cm as medium trees; and DBH ≥ 20 cm as large trees). The net relatedness index (NRI) and net nearest taxon index (NTI) were utilized to evaluate the phylogenetic structure and infer ecological processes. Our findings revealed a consistent decrease in both NRI and NTI with increasing spatial scales and tree sizes. These results suggest an overdispersed phylogenetic structure within the community across different spatial scales and tree sizes. Additionally, negative density dependence was found to have a pronounced effect on the phylogenetic structure, with a more significant impact on tree individuals from small and medium DBH classes than large ones. This study underscores the significance of phylogenetic density dependence as a primary mechanism governing species diversity and shaping the community structure of evergreen broadleaved forests in Vietnam.

References

. Loreau M., Naeem S., Inchausti P., Bengtsson J., Grime J. P., Hector A., Hooper D. U., Huston M. A., Raffaelli D. & Schmid B. (2001). Biodiversity and ecosystem functioning: current knowledge and future challenges. science. 294(5543): 804-808.

. Isbell F., Calcagno V., Hector A., Connolly J., Harpole W. S., Reich P. B., Scherer-Lorenzen M., Schmid B., Tilman D. & Van-Ruijven J. (2011). High plant diversity is needed to maintain ecosystem services. Nature. 477(7363): 199-202.

. Palmer M. W. (1994). Variation in species richness: towards a unification of hypotheses. Folia Geobot. 29. 511-30.

. Chave J. (2004). Neutral theory and community ecology. Ecology letters. 7(3): 241-253.

. Tokeshi M. (1990). Niche apportionment or random assortment-species abundance patterns revisited. J. Anim. Ecol. 59: 1129-46.

. Hubbell S. P. (2001). The Unified Neutral Theory of Biodiversity and Biogeography. ed. Princeton University Press. Princeton, NJ.

. Hubbell S. P. (2006). Neutral theory and the evolution of ecological equivalence. Ecology. 87(6): 1387-1398.

. Puttker T., de Arruda Bueno A., Prado P. I. & Pardini R. (2015). Ecological filtering or random extinction? Beta‐diversity patterns and the importance of niche‐based and neutral processes following habitat loss. Oikos. 124(2): 206-215.

. Janzen D. H. (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist. 104(940): 501-528.

. Connell J. H. (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Dynamics of populations. 298(312).

. Bagchi R., Swinfield T., Gallery R. E., Lewis O. T., Gripenberg S., Narayan L. & Freckleton R. P. (2010). Testing the Janzen‐Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree. Ecology letters. 13(10): 1262-1269.

. Burkey T. (1994). Tropical tree species diversity: a test of the Janzen-Connell model. Oecologia. 97: 533-540.

. Brooker R. W., Maestre F. T., Callaway R. M., Lortie C. L., Cavieres L. A., Kunstler G., Liancourt P., Tielborger K., Travis J. M. J. & Anthelme F. (2008). Facilitation in plant communities: the past, the present, and the future. Journal of ecology. 11(2): 18-34.

. Lessard J. P., Borregaard M. K., Fordyce J. A., Rahbek C., Weiser M. D., Dunn R. R. & Sanders N. J. (2012). Strong influence of regional species pools on continent-wide structuring of local communities. Proceedings of the Royal Society B: Biological Sciences. 279(1727): 266-274.

. Dobzhansky T. (2013). Nothing in biology makes sense except in the light of evolution. The american biology teacher. 75(2): 87-91.

. Wisz M. S., Pottier J., Kissling W. D., Pellissier L., Lenoir J., Damgaard C. F., Dormann C. F., Forchhammer M. C., Grytnes J. A. & Guisan A. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological reviews. 88(1): 15-30.

. Webb C. O., Ackerly D. D., McPeek M. A. & Donoghue M. J. (2002). Phylogenies and community ecology. Annual review of ecology and systematics. 33(1): 475-505.

. Kress W. J., García-Robledo C., Uriarte M. & Erickson D. L. (2015). DNA barcodes for ecology, evolution, and conservation. Trends in ecology & evolution. 30(1): 25-35.

. Wiens J. J. & Graham C. H. (2005). Niche conservatism: integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36: 519-539.

. Graham C. H. & Fine P. V. A. (2008). Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecology letters. 11(12): 1265-1277.

. Crisp M. D. & Cook L. G. (2012). Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytologist. 196(3): 681-694.

. Graham C. H., Storch D. & Machac A. (2018). Phylogenetic scale in ecology and evolution. Global Ecology and Biogeography. 27(2): 175-187.

. Liao J. Q., Cao X. F., Zhao L., Wang J., Gao Z., Wang M. C. & Huang Y. (2016). The importance of neutral and niche processes for bacterial community assembly differs between habitat generalists and specialists. FEMS Microbiology Ecology. 92(11): 174.

. Chai Y. F., Yue M., Liu X., Guo Y. X., Wang M., Xu J. S., Zhang C. G., Chen Y., Zhang L. X. & C. Z. R. (2016). Patterns of taxonomic, phylogenetic diversity during a long-term succession of forest on the Loess Plateau, China: insights into assembly process. Scientific Reports. 6(1): 27087.

. Lu T., Wang N. J., Xie L., Chen S. F., Zhao R., Feng Y. Y., Li Y., Ding H. & Fang Y. M. (2022). Environmental heterogeneity affecting community assembly patterns and phylogenetic diversity of three forest communities at Mt. Huangshan, China. Forests. 13(1): 133.

. Webb C. O. (2000). Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist. 156(2): 145-155.

. Nguyen Hong Hai, Le Van Cuong & Nguyen Van Quy (2023). Structuring mechanism of tree species diversity pattern in an evergreen broadleaved forest in Con Dao National Park, Vietnam. Journal of Forestry Science and Technology. 8(2): 77-86.

DOI: https://doi.org/10.55250/jo.vnuf.8.2.2023.077-086

. Mitsuguchi T., Dang P. X., Kitagawa H., Uchida T. & Shibata Y. (2008). Coral Sr/Ca and Mg/Ca records in Con Dao Island off the Mekong Delta: assessment of their potential for monitoring ENSO and East Asian monsoon. Global and Planetary Change. 63(4): 341-352.

. Nguyen Van Quy, Nguyen Van Hop, Pham Mai Phuong & Nguyen Hong Hai (2023). Coexistence mechanisms of tree species in an evergreen forest on Con Dao Islands, Vietnam. Biology Bulletin. 50(16): 233-249.

. APG III. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society. 161: 105-121.

. Ren S. Y., Wang T., Zhu Y., Ye Y. Z., Yuan Z. L., Li C., Pan N. & Li L. X. (2014). Phylogenetic structure of individuals with different DBH sizes in a deciduous broad-leaved forest community in the temperate-subtropical ecological transition zone, China. Biodiversity Science. 22(5): 574.

. Kembel S. W. & Kembel M. S. W. (2014). Package ‘picante’. R Foundation for Statistical Computing, Vienna, Austria: https://cran. r-project. org/web/packages/picante/picante.pdf.[Google Scholar].

. Wiegand T., Uriarte M., Kraft N. J. B., Shen G. C., Wang X. G. & He F. L. (2017). Spatially explicit metrics of species diversity, functional diversity, and phylogenetic diversity: Insights into plant community assembly processes. Annual Review of Ecology, Evolution, and Systematics. 48: 329-351.

. Kembel S. W. & Hubbell S. P. (2006). The phylogenetic structure of a neotropical forest tree community. Ecology. 87(sp7): S86-S99.

. Kembel S. W., Cowan P. D., Helmus M. R., Cornwell W. K., Morlon H., Ackerly D. D., Blomberg S. P. & Webb C. O. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 26(11): 1463-1464.

. Yuan Z. L., Chen Y., Wei B. L., Zhang B. Q., Wang D. Y. & Ye Y. Z. (2013). Species habitat correlation analysis in temper-ate-subtropical ecological transition zone. Acta ecologica sinica. 33: 7819-7826.

. Wright J. S. (2002). Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia. 130: 1-14.

. Webb C. O., Gilbert G. S. & Donoghue M. J. (2006). Phylodiversity‐dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology. 87(sp7): S123-S131.

. Cavender-Bares J., Keen A. & Miles B. (2006). Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology. 87(sp7): S109-S122.

. Swenson N. G., Enquist B. J., Pither J., Thompson J. & Zimmerman J. K. (2006). The problem and promise of scale dependency in community phylogenetics. Ecology. 87(10): 2418-2424.

. Bin Y., Wang Z. G., Wang Z. M., Ye W. H., Cao H. L. & Lian J. Y. (2010). The effects of dispersal limitation and topographic heterogeneity on beta diversity and phylobetadiversity in a subtropical forest. Plant Ecology. 209: 237-256.

. Condit R. (1995). Research in large, long-term tropical forest plots. Trends in Ecology & Evolution. 10(1): 18-22.

. Y N. H., G. W. Z., Y. L. J., H. Y. W. & Shen H. (2011). New progress in community assembly: community phylogenetic structure combining evolution and ecology. Biodiversity Science. 19(3): 275.

. Lewis J. R. (2019), Functional divergence between Vachellia and Senegalia could underpin differences in invasiveness and Eltonian niche partitioning in African savannas, Faculty of Science.

. Jansen P. A., Visser Marco D., Joseph-Wright S., Rutten G. & Muller‐Landau H. C. (2014). Negative density dependence of seed dispersal and seedling recruitment in a Neotropical palm. Ecology letters. 17(9): 1111-1120.

Metrics

Metrics Loading ...

Downloads

Abstract View: 380
PDF Downloaded: 313

Published

15-05-2024

How to Cite

Van Quy, N., Manh, V., Tuan Minh Thanh, D., Thi Van, N., Trung Duc, N., & Hong Hai, N. (2024). Phylogenetic diversity patterns of woody species across different tree sizes and spatial scales in a tropical forest community on Con Dao Islands. Journal of Forestry Science and Technology, 9(1), 042–053. https://doi.org/10.55250/Jo.vnuf.9.1.2024.042-053

Issue

Section

Silviculture and Forest Inventory-Planning