Mechanisms Maintaining Biomass Stability in Woody Species Communities in Evergreen Broadleaved Forests of Dong Nai Culture and Nature Reserve, Dong Nai province, Southern Vietnam


Authors

  • Nguyen Van Quy Southern Branch of Joint Vietnam - Russia Tropical Science and Technology Research Center
  • Le Van Cuong Vietnam National University of Forestry – Dong Nai Campus
  • Vu Manh Southern Branch of Joint Vietnam - Russia Tropical Science and Technology Research Center
  • Nguyen Thi Van Southern Branch of Joint Vietnam - Russia Tropical Science and Technology Research Center
  • Nguyen Van Hop Vietnam National University of Forestry – Dong Nai Campus
  • Nguyen Thanh Tuan Vietnam National University of Forestry – Dong Nai Campus
  • Nguyen Hong Hai Viet Nam National University of Forestry
DOI: https://doi.org/10.55250/Jo.vnuf.9.2.2024.043-054

Keywords:

Biodiversity, community stability, dominant species, species asynchrony, theoretical ecology

Abstract

Tropical forest ecosystems experience dynamic changes in response to environmental fluctuations and disturbances. Understanding the mechanisms governing their stability is crucial for maintaining ecosystem services. Among these ecosystems, evergreen broadleaved forests play a pivotal global role. This study investigates the impacts of overyielding, stand structure, species asynchrony, and the stability of dominant species on community biomass stability (CBS) within the Dong Nai Culture and Nature Reserve's evergreen broadleaved forests. The study utilized species richness, diameter-at-breast-height (DBH) variation coefficient, species asynchrony, and stability of dominant species as explanatory variables. The response variables included CBS, mean biomass (µ), and biomass standard deviation (σ). Three structural equation models (SEMs) were constructed to assess the relative strengths of direct and indirect effects among these variables. The results indicated that: (1) The SEMs achieved a good fit, explaining 41.8% of the variance in CBS. (2) Species richness negatively correlated significantly with µ (path coefficient = -0.112) and σ (-0.056). (3) DBH variation coefficient showed significant negative correlations with CBS (-0.161) and µ (-0.087). (4) Species asynchrony exhibited significant positive correlations with CBS (0.061), µ (0.076), and σ (0.061). (5) Dominant species stability showed significant positive correlations with CBS (0.588) and µ (0.153) and a negative correlation with σ (-0.588). These findings underscore that while stand structure and species asynchrony significantly influence CBS in evergreen broadleaved forests, the stability of dominant species emerges as the primary predictor of CBS. Therefore, effective forest management strategies should prioritize conserving and enhancing conditions that support dominant species, ensuring the sustainability of forest ecosystems in the study area.

References

. Hartmann H., Bastos A., Das A. J., Esquivel-Muelbert A., Hammond W. M., Martínez-Vilalta J., McDowell N. G., Powers J. S., Pugh T. A. & Ruthrof K. X. (2022). Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology. 73: 673-702. DOI: https://doi.org/10.1146/annurev-arplant-102820-012804

. Funk J. M., Aguilar-Amuchastegui N., Baldwin-Cantello W., Busch J., Chuvasov E., Evans T., Griffin B., Harris N., Ferreira M. N. & Petersen K. (2019). Securing the climate benefits of stable forests. Climate Policy. 19(7): 845-860. DOI: https://doi.org/10.1080/14693062.2019.1598838

. Gross N., Suding K., Lavorel S. & Roumet C. (2007). Complementarity as a mechanism of coexistence between functional groups of grasses. Journal of Ecology. 95(6): 1296-1305. DOI: https://doi.org/10.1111/j.1365-2745.2007.01303.x

. Loreau M., Barbier M., Filotas E., Gravel D., Isbell F., Miller S. J., Montoya J. M., Wang S., Aussenac R. & Germain R. (2021). Biodiversity as insurance: from concept to measurement and application. Biological Reviews. 96(5): 2333-2354. DOI: https://doi.org/10.1111/brv.12756

. Zhou T., Zhang J., Qin Y., Zhou G., Wang C., Xu Y., Fei Y., Qiao X. & Jiang M. (2023). Species asynchrony and large trees jointly drive community stability in a montane subtropical forest. Ecosystems. 26(4): 740-751. DOI: https://doi.org/10.1007/s10021-022-00790-5

. Craven D., Eisenhauer N., Pearse W. D., Hautier Y., Isbell F., Roscher C., Bahn M., Beierkuhnlein C., Bönisch G. & Buchmann N. (2018). Multiple facets of biodiversity drive the diversity–stability relationship. Nature ecology & evolution. 2(10): 1579-1587. DOI: https://doi.org/10.1038/s41559-018-0647-7

. Grime J. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology. 86(6): 902-910. DOI: https://doi.org/10.1046/j.1365-2745.1998.00306.x

. Hallett L. M., Hsu J. S., Cleland E. E., Collins S. L., Dickson T. L., Farrer E. C., Gherardi L. A., Gross K. L., Hobbs R. J. & Turnbull L. (2014). Biotic mechanisms of community stability shift along a precipitation gradient. Ecology. 95(6): 1693-1700. DOI: https://doi.org/10.1890/13-0895.1

. Ma F., Zhang F., Quan Q., Song B., Wang J., Zhou Q. & Niu S. (2021). Common species stability and species asynchrony rather than richness determine ecosystem stability under nitrogen enrichment. Ecosystems. 24: 686-698. DOI: https://doi.org/10.1007/s10021-020-00543-2

. Wagg C., Roscher C., Weigelt A., Vogel A., Ebeling A., De Luca E., Roeder A., Kleinspehn C., Temperton V. M. & Meyer S. T. (2022). Biodiversity–stability relationships strengthen over time in a long-term grassland experiment. Nature Communications. 13(1): 7752. DOI: https://doi.org/10.1038/s41467-022-35189-2

. Jenkins M. & Schaap B. (2018). Forest ecosystem services. Background analytical study. 1.

. Shi Z., Xu X., Souza L., Wilcox K., Jiang L., Liang J., Xia J., García-Palacios P. & Luo Y. (2016). Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest. Nature communications. 7(1): 11973. DOI: https://doi.org/10.1038/ncomms11973

. Schnabel F., Schwarz J. A., Dănescu A., Fichtner A., Nock C. A., Bauhus J. & Potvin C. (2019). Drivers of productivity and its temporal stability in a tropical tree diversity experiment. Global change biology. 25(12): 4257-4272. DOI: https://doi.org/10.1111/gcb.14792

. Ouyang S., Xiang W., Gou M., Chen L., Lei P., Xiao W., Deng X., Zeng L., Li J. & Zhang T. (2021). Stability in subtropical forests: The role of tree species diversity, stand structure, environmental and socio‐economic conditions. Global Ecology and Biogeography. 30(2): 500-513. DOI: https://doi.org/10.1111/geb.13235

. Nguyen Van Quy, Vu Manh, Nguyen Van Hop, Nguyen Van Lam, Nguyen Van Thanh & Nguyen Hong Hai (2023). Niche and interspecific association of tree species in an evergreen broadleaved forest in Dong Nai Culture and Nature Reserve. Vietnam Journal of Forest Science. 5: 84-101.

. Pham Hoang Ho (1999-2003). An Illustrated Flora of Vietnam. ed. Vol. 1-3. Young Publishing House. Hanoi, Vietnam.

. Tran Hop (2002). Timber trees resources in Vietnam. ed. Agricultural Publishing House. Hanoi, Vietnam.

. Chave J., Réjou‐Méchain M., Búrquez A., Chidumayo E., Colgan M. S., Delitti W. B., Duque A., Eid T., Fearnside P. M. & Goodman R. C. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global change biology. 20(10). 3177-3190. DOI: https://doi.org/10.1111/gcb.12629

. Yu S. J., Wang J., Zhang C. Y. & Zhao X. H. (2022). Impact and mechanism of maintaining biomass stability in a temperate coniferous and broadleaved mixed forest. Chinese Journal of Plant Ecology. 46(6): 632. DOI: https://doi.org/10.17521/cjpe.2021.0282

. Forrester D. I. (2019). Linking forest growth with stand structure: Tree size inequality, tree growth or resource partitioning and the asymmetry of competition. Forest Ecology and Management. 447: 139-157. DOI: https://doi.org/10.1016/j.foreco.2019.05.053

. Forrester D. I., Rodenfels P., Haase J., Härdtle W., Leppert K. N., Niklaus P. A., von Oheimb G., Scherer-Lorenzen M. & Bauhus J. (2019). Tree-species interactions increase light absorption and growth in Chinese subtropical mixed-species plantations. Oecologia. 191: 421-432. DOI: https://doi.org/10.1007/s00442-019-04495-w

. Petchey O. L., Casey T., Jiang L., McPhearson P. T. & Price J. (2002). Species richness, environmental fluctuations, and temporal change in total community biomass. Oikos. 99(2): 231-240. DOI: https://doi.org/10.1034/j.1600-0706.2002.990203.x

. Gross K., Cardinale B. J., Fox J. W., Gonzalez A., Loreau M., Wayne Polley H., Reich P. B. & van Ruijven J. (2014). Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. The American Naturalist. 183(1): 1-12. DOI: https://doi.org/10.1086/673915

. Valencia E., De Bello F., Galland T., Adler P. B., Lepš J., E-Vojtkó A., van Klink R., Carmona C. P., Danihelka J. & Dengler J. (2020). Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences. 117(39): 24345-24351. DOI: https://doi.org/10.1073/pnas.1920405117

. Yuan Z., Ali A., Wang S., Wang X., Lin F., Wang Y., Fang S., Hao Z., Loreau M. & Jiang L. (2019). Temporal stability of aboveground biomass is governed by species asynchrony in temperate forests. Ecological indicators. 107: 105661. DOI: https://doi.org/10.1016/j.ecolind.2019.105661

. Ali A., Lin S. L., He J. K., Kong F. M., Yu J. H. & Jiang H. S. (2019). Big‐sized trees overrule remaining trees' attributes and species richness as determinants of aboveground biomass in tropical forests. Global Change Biology. 25(8): 2810-2824. DOI: https://doi.org/10.1111/gcb.14707

. Li X., Zuo X., Qiao J., Hu Y., Wang S., Yue P., Cheng H., Song Z., Chen M. & Hautier Y. (2024). Context‐dependent impact of changes in precipitation on the stability of grassland biomass. Functional Ecology. DOI: https://doi.org/10.1111/1365-2435.14539

. Hou G., Zhou T., Shi P., Sun J., Zong N., Yu J. & Song M. (2023). Multi-year nitrogen accumulation weakens the stabilizing effect of species asynchrony on drought resistance in a Tibetan alpine meadow. Agricultural and Forest Meteorology. 340: 109617. DOI: https://doi.org/10.1016/j.agrformet.2023.109617

. Xu Z., Ren H., Li M. H., van Ruijven J., Han X., Wan S., Li H., Yu Q., Jiang Y. & Jiang L. (2015). Environmental changes drive the temporal stability of semi‐arid natural grasslands through altering species asynchrony. Journal of Ecology. 103(5): 1308-1316. DOI: https://doi.org/10.1111/1365-2745.12441

. Avolio M. L., Forrestel E. J., Chang C. C., La Pierre K. J., Burghardt K. T. & Smith M. D. (2019). Demystifying dominant species. New Phytologist. 223(3): 1106-1126. DOI: https://doi.org/10.1111/nph.15789

. Chase J. M., McGill B. J., McGlinn D. J., May F., Blowes S. A., Xiao X., Knight T. M., Purschke O. & Gotelli N. J. (2018). Embracing scale‐dependence to achieve a deeper understanding of biodiversity and its change across communities. Ecology letters. 21(11): 1737-1751. DOI: https://doi.org/10.1111/ele.13151

. Satoo T. & Madgwick H. (2012). Forest biomass. ed. Vol. 6. Springer Science & Business Media.

Metrics

Metrics Loading ...

Downloads

Abstract View: 95
PDF Downloaded: 59

Published

12-11-2024

How to Cite

Van Quy, N., Cuong, L. V., Manh, V., Van, N. T., Hop, N. V., Tuan, N. T., & Hai, N. H. (2024). Mechanisms Maintaining Biomass Stability in Woody Species Communities in Evergreen Broadleaved Forests of Dong Nai Culture and Nature Reserve, Dong Nai province, Southern Vietnam. Journal of Forestry Science and Technology, 9(2), 043–054. https://doi.org/10.55250/Jo.vnuf.9.2.2024.043-054

Issue

Section

Silviculture and Forest Inventory-Planning

Most read articles by the same author(s)