Mangrove above-ground carbon estimation from Sentinel-1A (SAR) and field-based data in Tien Yen district, Quang Ninh province


Authors

  • Nguyen Hai Hoa Vietnam National University of Forestry
  • Vu Van Truong Vietnam National University of Forestry
  • Nguyen Thi Thu Hien Thuyloi University
  • Ha Tri Son Vietnam National University of Forestry
  • Nguyen Van Thi Vietnam National University of Forestry
  • Nguyen Trong Cuong Vietnam National University of Forestry
  • Nguyen Thi Bich Hao Vietnam National University of Forestry
  • Tran Thi Huong Vietnam National University of Forestry
  • Phan Duc Le Vietnam National University of Forestry
  • Phan Van Dung Vietnam National University of Forestry
  • Thai Thi Thuy An Vietnam National University of Forestry
  • Le Phu Tuan Ministry of Science and Technology
DOI: https://doi.org/10.55250/Jo.vnuf.9.1.2024.073-085

Keywords:

mangrove forest, Sentinel-1A, Tien Yen, VV and VH polarization, Above-ground carbon

Abstract

Mangrove forests have been globally recognized as they play a vital role in preventing coastal erosion, mitigating the effects of wave actions, and protecting coastal habitats and adjacent shoreline land-uses from extreme coastal events. Sentinel-1 (SAR) offers a new opportunity for mangrove cover mapping and biomass estimation, especially in the tropics where mangrove deforestation and degradation are highest and cloud cover is persistent. This study used the Sentinel-1A-derived VV/VH polarizations for mangrove cover mapping with thresholds of -23.5<VH<-9.05 and -17.5<VV<-3.8. Upon using VV and VH polarizations for mangrove cover mapping compared to PlanetScope data, it has been confirmed that these polarizations are suitable for mangrove cover monitoring along the coast of Tien Yen with an overall accuracy of over 90.5% and Kappa coefficient greater than 0.78 in 2022. This study also developed mangrove AGB models based on the field survey data and SAR data for estimating the AGB of mangrove forests in Tien Yen. In fact, we evaluated the capability of using Sentinel-1A for the retrieval and predictive mapping and mangrove AGB through the conventional linear regression models. The findings show that the models based on VV and VH polarization values from Sentinel-1A can be used for mangrove AGB estimation. Overall, selected AGB Model 1 with R2=0.445 (p-value<0.001) has provided an option for carbon estimation. To have more accurate AGB models based on SAR data, this study also suggests that more research should be carried out using more advanced machine learning models based on Sentinel-1A and Sentinel-1B for carbon estimation of mangrove forests in Tien Yen.

References

. Kathiresan, K. & Bingham B.L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology. 40:81-251.

https://doi.org/10.1016/S0065-2881(01)40003-4

. Duke, N.C., Meynecke, J.O., Dittmann, S., Ellison, A.M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K.C., Field, C.D., Koedam, N., Lee, S.Y., Marchand, C., Nordhaus, I. & Dahdouh-Guebas, F. (2007). A World without Mangroves? Science. 317(5834):41b–42. http://doi:10.1126/science.317.5834.41b

. Hai-Hoa, N. (2014). The relation of coastal mangrove changes and adjacent land-use: A review in Southeast Asia and Kien Giang, Vietnam. Ocean and Coastal Management. 90:1-10.

https://doi.org/10.1016/j.ocecoaman.2013.12.016

. Valiela. I, Bowen. J.L & York. J.K. (2001). Mangrove Forests: One of the World’s Threatened Major Tropical Environments. BioScience. 51(10):807–815.s.

https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2

. Hai-Hoa, N., McAlpine, C., Pullar, D., Johansen, K. & Duke, N.C. (2013). The relationship of spatial–temporal changes in fringe mangrove extent and adjacent land-use: Case study of Kien Giang coast, Vietnam. Ocean and Coastal Management. 76:12–32. http://dx.doi.org/10.1016/j.ocecoaman.2013.01.003

. Hai-Hoa, N., Cuong, N.T. & Nguyen, V.D. (2022). Spatial-temporal dynamics of mangrove extent in Quang Ninh province over 33 years (1987–2020): Implications toward mangrove management in Vietnam. Regional Studies in Marine Science. 52:102212.

https://doi.org/10.1016/j.rsma.2022.102212

. Hai-Hoa, N. & Hien, N.T.T. (2021). Above-ground biomass estimation models of mangrove forest based-on remote sensing and field-surveyed data: Implication for C-PFES implementation in Quang Ninh province, Vietnam. Regional Studies in Marine Science. 48:101985. http://dx.doi.org/10.1016/j.rsma.2021.101985

. Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E., Potin, P., Rommen, B.Ö., Floury, N., Brown, M., Traver, I.N., Deghaye, P., Duesmann, B., Rosich, R., Miranda, N., Bruno, C., LAbbate, M., Croci, R., Pietropaolo, A., Huchler, M. & Rostan, F. (2012). GMES Sentinel-1 mission. Remote Sens. Environ. 120:9-24.

https://doi.org/10.1016/j.rse.2011.05.028

. Stahl, G., Saarela, S., Schnell, S., Holm, S., Breidenbach, J., Healey, S.P., Patterson, P.L., Magnussen, S., Næsset, E., McRoberts, R.E. & Gregoire, T.G. (2016). Use of models in large-area forest surveys: Comparing model-assisted, model-based and hybrid estimation. For. Ecosyst. 3:5. https://doi.org/10.1186/s40663-016-0064-9

. Næsset, E., Gobakken, T., Solberg, S., Gregoire, T.G., Nelson, R., Ståhl, G. & Weydahl, D. (2011). Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data: A case study from a boreal forest area. Remote Sens. Environ. 115:3599-3614. https://doi.org/10.1016/j.rse.2011.08.021

. Hai-Hoa, N., Nghia, N.H., Cuong, N.T., Lan, T.T.N. & Quynh, P.N. (2019). Estimation of changes in mangrove carbon stocks from remotely sensed data-based models: Case study in Quang Yen town, Quang Ninh Province during 2017-2019. Journal of Forestry Science and Technology. 8:98-108.

. Hai-Hoa, N., Nghia, N.H., Hien, N.T.T., An, L.T., Lan, T.T., Linh, D., Simone, B. & Michael, F. (2020). Classification Methods for Mapping Mangrove Extents and Drivers of Change in Thanh Hoa province, Vietnam during 2005-2018. Forest and Society. 4, 225. https://doi.org/10.24259/fs.v4i1.9295.

. Hai-Hoa, N., Quang, P.D.Q., Truong, V.V. & Tuan, L.P. (2022). Mapping mangrove cover change using PlanetScope data (2017-2022) in Quang Yen town, Quang Ninh province toward sustainable mangrove management. Journal of Forestry Science and Technology. 13:77-80.

https://doi.org/10.55250/jo.vnuf.2022.13.071-080

. Kauffman J.B. & Donato D.C. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Working Paper 86. CIFOR, Bogor, Indonesia.

. Kauffman, J.B., Heider, C., Norfolk, J. & Payton, F. (2013). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 24 (3):518-527. https://doi.org/10.1890/13-0640.1

. Komiyama, A., Poungparn, S. & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 21(04):471-477.

. Clough B.F. & Scott K. (1989). Allometric relationships for estimating above-ground biomass in six mangrove species. For. Ecol. Manag. 27:117–127.

. Fu W. & Wu Y. (2011). Estimation of aboveground biomass of di_erent mangrove trees based on canopy diameter and tree height. Procedia Environ. Sci. 10:2189–2194.

. Simpson W.T. (1996). Method to estimate dry-kiln schedules and species groupings: Tropical and temperate hardwoods. RPL-RP-548. USDA Forest Service, Forest Products Laboratory, Madison, USA

. Long, J.B. & Giri, C. (2011). Mapping the Philippines’ mangrove forests using Landsat imagery. Sensors. 11(3):2972-2981.

https://doi.org/10.3390/s110302972.

Congalton. R.G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment. 37:35-46.

https://doi.org/10.1016/0034-4257(91)90048-B

. Stehman, S.V. (1997). Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment. 62(1):77-89. https://doi:10.1016/s0034-4257(97)00083-7

. Conchedda. G., Durieux. L. & Mayaux, P. (2008). An object-based method for mapping and change analysis in mangrove ecosystems. ISPRS Journal of Photogrammetry and Remote Sensing. 63:578-589. https://doi.org/10.1016/j.isprsjprs.2008.04.002

. Dat, P.T. & Yoshino, K. (2016). Impacts of mangrove management systems on mangrove changes in the Northern Coast of Vietnam. Tropics. 24:141-151. https://doi.org/10.3759/tropics.24.141

. Foody, G.M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment. 80:185-201.

https://doi.org/10.1016/S0034-4257(01)00295-4

. Knott, E., Schaeffer, J. F. & Tulley, M.T. (2004). Radar Cross Section. Raleigh, NC, USA.

Metrics

Metrics Loading ...

Downloads

Abstract View: 316
PDF Downloaded: 218

Published

15-05-2024

How to Cite

Hai Hoa, N., Van Truong, V., Thi Thu Hien, N., Tri Son, H., Van Thi, N., Trong Cuong, N., Thi Bich Hao, N., Thi Huong, T., Duc Le, P., Van Dung, P., Thi Thuy An, T., & Phu Tuan, L. (2024). Mangrove above-ground carbon estimation from Sentinel-1A (SAR) and field-based data in Tien Yen district, Quang Ninh province. Journal of Forestry Science and Technology, 9(1), 073–085. https://doi.org/10.55250/Jo.vnuf.9.1.2024.073-085

Issue

Section

Resource management & Environment

Most read articles by the same author(s)

<< < 1 2 3