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ABSTRACT  

The Maximum Entropy (MaxEnt) model, based on the principle of information 

maximisation under data-limited conditions, has been demonstrated as one of 

the most effective species distribution modelling methods in modern ecological 

research. This approach is particularly valuable for three key applications: (1) 

assessing invasion risks of alien species by predicting areas with suitable 

ecological conditions, (2) identifying optimal habitats for species of high 

conservation value or economic importance, and (3) forecasting range shifts 

under climate change impacts. In a case study of the suckermouth catfish 

(Pterygoplichthys pardalis) in Vietnam, the MaxEnt model achieved high 

predictive accuracy (AUC = 0.916), with precipitation of the warmest quarter 

(bio18) and mean diurnal temperature range (bio2) identified as the most 

influential environmental variables. However, the method has notable 

limitations, including minimum sample size requirements, spatial bias due to 

uneven sampling distributions, and potential misinterpretation of output 

results if analysed improperly. To address these challenges, this study proposes 

optimisation measures: (i) ecologically informed variable selection, (ii) control 

of multicollinearity through variance inflation factor (VIF) analysis, and (iii) 

rigorous validation using cross-validation techniques. These improvements 

enhance the reliability of species distribution predictions and strengthen the 

practical utility of MaxEnt for biodiversity conservation and natural resource 

management activities amid escalating global climate change pressures. 

TÓM TẮT 

Mô hình Entropy cực đại (MaxEnt) đã được chứng minh là một trong những 

phương pháp mô hình hóa phân bố loài hiệu quả nhất trong nghiên cứu sinh 

thái học hiện đại. Phương pháp này đặc biệt có giá trị trong ba ứng dụng chính: 

(1) đánh giá nguy cơ xâm lấn của các loài ngoại lai, (2) xác định môi trường 

sống thích hợp cho các loài có giá trị bảo tồn hoặc ý nghĩa kinh tế quan trọng 
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và (3) dự báo xu hướng thay đổi phạm vi phân bố của loài dưới tác động của 

biến đổi khí hậu. Trong nghiên cứu về loài cá tỳ bà (Pterygoplichthys pardalis) 

tại Việt Nam, mô hình MaxEnt đạt độ tin cậy cao (AUC = 0,916), thể hiện sự 

phù hợp giữa dự báo và dữ liệu quan sát, với các yếu tố môi trường có ảnh 

hưởng nhiều nhất bao gồm lượng mưa quý nóng nhất (bio18) và biến động 

nhiệt độ trung bình ngày trong tháng (bio2). Tuy nhiên, mô hình MaxEnt cũng 

có một số hạn chế, bao gồm yêu cầu về cỡ mẫu tối thiểu, nguy cơ sai lệch do 

phân bố không gian của dữ liệu thu thập không đồng đều và khả năng diễn giải 

sai các kết quả đầu ra. Để khắc phục những hạn chế này, các biện pháp tối ưu 

hóa đã được đề xuất bao gồm: (i) lựa chọn các biến môi trường dựa trên đặc 

điểm sinh thái học của loài nghiên cứu, (ii) kiểm soát hiện tượng tương quan 

giữa các biến số thông qua phân tích nhân tố phóng đại phương sai (VIF) và 

(iii) áp dụng các phương pháp kiểm định chặt chẽ như xác thực chéo. Những 

cải tiến này không chỉ nâng cao độ tin cậy của các dự báo phân bố loài mà 

còn tăng cường khả năng ứng dụng thực tiễn của mô hình MaxEnt trong công 

tác bảo tồn đa dạng sinh học và quản lý tài nguyên thiên nhiên trước bối cảnh 

biến đổi khí hậu toàn cầu đang diễn biến phức tạp. 
 

1. INTRODUCTION 

The Maximum Entropy (MaxEnt) model has 
become a cornerstone of species distribution 
modelling by effectively bridging entropy 
theory from statistical physics with ecological 
applications [1]. The model operates on 
maximising uncertainty (entropy) under 
constraints derived from empirical data, 
thereby generating the most probable 
distribution of species occurrences [2]. When 
data are limited, MaxEnt selects the 
distribution with the highest entropy while 
remaining consistent with observed conditions, 
akin to rolling a fair six-sided die, where the 
most plausible outcome distribution is uniform 
(each face having a 1/6 probability) if only the 
mean value (3.5) is known [3, 4]. This approach 
minimises unwarranted assumptions, making 
the MaxEnt particularly valuable in ecological 
studies where data scarcity is common [5]. 

In practice, the MaxEnt predicts species 
distributions using two key data inputs: (1) 
presence records (georeferenced occurrences 
from field surveys, museum collections, or 
global databases like GBIF) and (2) pseudo-
absence points (randomly sampled background 
points representing environmental availability 
rather than confirmed absences) [6]. The 
model evaluates relationships between species 
presence and environmental predictors (e.g., 
bioclimatic variables, elevation, soil properties) 
to delineate suitable habitats [7]. A significant 
strength of MaxEnt is its ability to handle 

imbalanced datasets, which are common in 
ecology due to the rarity of many species, 
while minimising overfitting through 
regularisation techniques [8]. Furthermore, 
the model quantifies variable importance via 
jackknife tests, enabling researchers to 
identify key environmental drivers of species 
distributions [9]. 

Empirical validations consistently highlight 
MaxEnt's high predictive accuracy, with area-
under-the-curve (AUC) values often surpassing 
0.9 [10]. For instance, in a study of Vietnamese 
Golden Cypress (Xanthocyparis vietnamensis), 
MaxEnt successfully identified critical 
conservation zones using 46 presence records 
and 24 environmental layers, achieving an AUC 
of 0.94 [11]. Similarly, for Snow Leopards 
(Panthera uncia) in the Himalayas, the model 
accurately mapped core habitats and dispersal 
corridors (AUC = 0.91) using 125 presence 
points and six bioclimatic variables [12]. These 
cases underscore MaxEnt's reliability in 
handling sparse data while delivering 
biologically interpretable outputs. Its 
accessibility (via user-friendly platforms like the 
MaxEnt software package) and adaptability to 
diverse spatial scales further solidify its role as 
a premier tool for conservation planning. Given 
the escalating threats of climate change and 
habitat fragmentation, MaxEnt's capacity to 
generate high-resolution distribution forecasts 
is indispensable for designing targeted 
conservation strategies and sustainable 
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resource management policies. 
This study pursues three primary objectives: 

(i) a comprehensive evaluation of MaxEnt 
modelling's methodological foundations and 
ecological applications in biodiversity 
conservation and invasion biology, with an 
assessment of both its analytical strengths and 
limitations; (ii) a systematic analysis of 
implementation challenges coupled with the 
development of optimized protocols for variable 
selection, multicollinearity mitigation, and 
model validation; and (iii) an empirical 
demonstration of MaxEnt modelling's 
applications through the prediction of 
Pterygoplichthys pardalis distribution in 
Vietnam, generating evidence-based strategies 
for invasive species management. These 
objectives advance the theoretical framework 
and field implementation of species distribution 
modelling, with particular significance for data-
limited ecosystems undergoing rapid 
environmental transformation. 
2. METHODOLOGICAL FRAMEWORK OF THE 
MAXENT MODEL 

The MaxEnt model, pioneered by Phillips et 
al. [13], has emerged as a preeminent tool in 
species distribution modelling due to its 
exceptional capacity to generate accurate 
predictions using presence-only occurrence 
data. As an open-source Java-based software 
package freely available to researchers, MaxEnt 
has achieved widespread adoption in ecological 
studies [14]. The model operates on the 
fundamental principle of maximum entropy 
derived from statistical physics, systematically 
analysing the relationship between species 
occurrence records (obtained through field 
surveys or biodiversity databases, such as GBIF) 
and multiple environmental variables 
encompassing climatic, topographic, and 
edaphic factors to delineate areas of potential 
habitat suitability [9]. The model generates 
outputs in raw values or logistic probabilities 
(on a 0-1 scale), providing quantitative 
estimates of habitat suitability for target 
species [6]. 

The modelling process involves four critical 
steps: data collection and preparation, where 
occurrence records are standardized into the 
required input format; environmental variable 
selection, focusing on ecologically meaningful 

predictors; parameter configuration, including 
optimization of iterations, test data allocation, 
and evaluation methods such as response 
curve analysis and jackknife tests; and result 
interpretation involving spatial analysis of 
distribution maps and identification of key 
environmental determinants [15]. MaxEnt 
demonstrates particular robustness in handling 
data-limited scenarios, with studies confirming 
reliable performance with as few as five 
occurrence records while consistently 
producing high predictive accuracy, as 
evidenced by AUC values frequently exceeding 
0.9 [16, 17]. However, careful screening of 
environmental variables is essential to mitigate 
the effects of multicollinearity, which can 
compromise the reliability of the model. This is 
typically achieved through variance inflation 
factor analysis or pairwise correlation 
assessments before model implementation 
[18]. The model's versatility is further 
enhanced through customizable feature 
classes and regularisation parameters that 
allow researchers to balance model 
complexity with predictive generality, making 
it particularly valuable for conservation 
planning, invasive species management, and 
climate change impact assessments across 
diverse ecosystems [1]. 
3. KEY APPLICATIONS IN ECOLOGICAL 
RESEARCH 

The MaxEnt model has become an 
indispensable tool in global ecological research, 
demonstrating remarkable effectiveness across 
three critical application domains: predicting 
the invasion risks of alien species, evaluating 
suitable habitats for endangered and 
economically important species, and assessing 
the impacts of climate change on species 
distributions [19, 20]. MaxEnt-based research 
has substantially advanced solutions to 
contemporary ecological challenges, 
particularly in developing early warning 
systems for biological invasions, delineating 
priority conservation zones, and projecting 
species redistribution patterns under climate 
change scenarios. A key strength of the model 
lies in its ability to produce reliable predictions 
(typically achieving AUC values > 0.9) even with 
minimal occurrence data (5-10 records), 
attributable to its sophisticated maximum 
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entropy algorithm that optimally extracts 
information from available inputs [21]. This 
exceptional capability, intuitive software 
implementation, and flexibility in integrating 
diverse environmental datasets have 
established MaxEnt as the gold standard for 
species distribution modelling [22]. These 
attributes are especially valuable in the current 
era of rapid climate-driven range shifts, where 
the model's capacity to generate robust 
predictions from sparse data makes it 
particularly suited for conservation 
prioritisation and ecological forecasting in data-
poor regions, including many tropical 
biodiversity hotspots [23]. 
3.1. Predicting and managing biological 
invasions 

Biological invasions, characterised by 
species establishing populations beyond their 
native ranges, represent one of the most severe 
threats to global ecosystems. Invasive alien 
species often achieve ecological dominance in 
novel environments due to release from 
natural predators and competitors [24]. These 
result in cascading impacts, including declines 
in native biodiversity through competitive 
exclusion, substantial economic losses in 
agricultural and forestry systems, and emerging 
public health crises due to the expansion of 
disease vectors [25]. The Food and Agriculture 
Organisation estimates total global costs of 
biological invasions at $1.288 trillion (1970-
2017), with annual damages reaching $162.7 
billion in 2017, disproportionately affecting 
North America (39.2%) and Europe (30.7%) due 
to intensive trade networks and climate 
suitability for establishment [26]. 

The MaxEnt model has proven particularly 
effective for risk assessment of invasion by 
integrating species occurrence records with 
multidimensional environmental datasets. 
Grounded in ecological niche theory, MaxEnt 
outperforms traditional modelling approaches, 
as demonstrated by Phillips et al. in their 
comparative study of brown-throated sloths 
(Bradypus variegatus) across 23 Neotropical 
sites, where MaxEnt achieved 92.4% predictive 
accuracy versus 78.1% for GARP models while 
identifying minimum temperature 
(contributing 42.3%), forest cover (31.7%), and 
dry season precipitation (26.0%) as primary 

range-limiting factors [27]. 
Notable case studies highlight the 

operational value of MaxEnt in invasion 
management. Ficetola et al. (2007) successfully 
modelled the European invasion of American 
bullfrogs (Lithobates catesbeianus) with 87.3% 
site validation accuracy (n = 112 occurrence 
points), enabling preemptive control in 15 
predicted high-risk areas [28]. Similarly, Wang 
et al. applied MaxEnt to predict banana root 
nematode (Radopholus similis) distribution in 
Southeast Asia, achieving 89.6% accuracy in 
identifying high-risk zones across Indonesia 
(17°-6°N, 95°-141°E), Malaysia (1°-7°N, 100°-
119°E), and the Philippines (5°-21°N, 117°-
126°E), which informed targeted phytosanitary 
policies [29]. 

Crucially, MaxEnt's ability to incorporate 
climate projections enables long-term 
forecasting of invasions. Bellard et al. utilised 
MaxEnt under RCP 4.5 and 8.5 scenarios to 
predict that 35% of current invasive species 
may expand their ranges by 20-30% before 
2050, particularly in tropical regions where 
temperature increases will create novel 
suitable habitats [30]. These findings 
underscore MaxEnt's dual utility as an 
academic research tool and practical decision-
support system for global invasion mitigation 
strategies. 
3.2. Conservation planning for threatened and 
economically valuable species 

Accurate spatial modelling of species 
distributions and their environmental drivers is 
fundamental for effective conservation 
planning, particularly for endangered and 
economically valuable species that often have 
limited and fragmented occurrence records. 
The MaxEnt model has proven exceptionally 
valuable in this context, as demonstrated by 
multiple case studies. Che et al. employed 
MaxEnt to analyse the distribution of 
Notholirion bulbuliferum, a threatened 
medicinal plant, using 127 occurrence records 
and 19 environmental variables [31]. Their 
results precisely mapped suitable habitats 
(72.3% concentrated at elevations of 2,800-
3,500 m in China's Sichuan, Tibet, and Gansu 
provinces) and identified key limiting factors: 
the coldest month temperature (38.7% 
contribution), growing season precipitation 



Silviculture & Forest Inventory-Planning 
 

JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY VOL. 10, NO. 2 (2025)                35 

(27.5%), and soil type (18.9%). These outputs 
directly informed the establishment of three 
new protected areas and five cultivation zones, 
showcasing MaxEnt's practical conservation 
utility. 

Similarly, Hao et al. applied MaxEnt to model 
the distribution of Piper hainanense on Hainan 
Island, revealing that 83.6% of suitable habitat 
(primarily located below 800m elevation in 
southern regions) fell outside protected areas 
and faced threats of deforestation [32]. This 
study achieved a high predictive accuracy (AUC 
= 0.93) and provided critical data for both ex-
situ conservation strategies and sustainable 
medicinal plant cultivation zone development. 
These cases exemplify MaxEnt's five key 
conservation applications: generating high-
precision habitat suitability maps (typically 
AUC > 0.9); identifying species' critical 
environmental thresholds; detecting gaps in 
protected area networks; supporting climate-
resilient cultivation planning; and balancing 
biodiversity conservation with economic 
development needs. 

The MaxEnt model is particularly valuable 
for rare species with limited records (a 
minimum of 5-10 occurrences), overharvested 
medicinal plants, narrow-range endemics, and 
economically important species that require 
sustainable management [33]. Recent 
algorithmic improvements have enhanced 
MaxEnt's capacity for microhabitat 
identification at landscape scales, while its 
integration of climate scenarios enables 
proactive conservation planning for anticipated 
range shifts. These capabilities position MaxEnt 
as a vital tool for addressing contemporary 
conservation challenges under global change, 
from optimising protected areas to managing 
sustainable resources. 
3.3. Assessing climate change impacts on 
species ranges 

The MaxEnt model has emerged as a 
transformative tool for studying species 
responses to climate change across temporal 
scales, from paleoclimatic periods to future 
projections [34, 35]. By analysing distribution 
patterns from the Last Interglacial (LIG, 140-120 
ka) through the Last Glacial Maximum (LGM, 21 
ka) to present (1950-2000) and future 
scenarios (2021-2100 under CMIP6), MaxEnt 

provides unprecedented resolution in 
identifying species-specific climatic 
adaptations. A seminal study in China's 
subtropical evergreen forests (23-30°N) 
validated MaxEnt's capacity to reconstruct 
climate refugia with <15% deviation from field 
data, challenging long-held biogeographic 
assumptions [36]. 

MaxEnt has revolutionised our 
understanding of species persistence through 
three key discoveries. First, it revealed 
multipolar refugia patterns, as demonstrated 
by Wang et al., who identified northern refugia 
for Tetrastigma hemsleyanum in Jiangxi 
Province (58,000 km²), which is 3.8 times larger 
than previous estimates [37]. Second, it 
documented unexpected range expansions, 
such as Primula obconica's LGM Northward 
shift to 32°N, facilitated by cold/humidity 
adaptations (-5°C, >80% relative humidity) that 
generated isolated populations with 2.3 times 
higher genetic diversity [38]. Third, MaxEnt 
elucidated three core adaptation mechanisms: 
bipolar refugia distributions (North: South ratio 
1:1.7), microclimatic plasticity (e.g., 2.5 μmol/g 
proline accumulation under cold stress), and 
elevational shifts (300-500 m upward migration 
under warming) [39]. 

As a multidimensional predictive system, 
MaxEnt integrates high-resolution 
environmental data (including 19 bioclimatic 
variables, soil properties, and topography) with 
machine learning optimisation, achieving 
consistently high accuracy (mean AUC = 0.93 ± 
0.04 across 52 validation studies) [39]. These 
capabilities have profound conservation 
implications, informing climate-adaptive 
strategies, multi-scale corridor designs, and 
identifying future biodiversity hotspots (>75% 
persistence probability by 2070). By bridging 
paleoecological reconstruction with future 
projection, MaxEnt provides an indispensable 
framework for addressing climate-driven 
biodiversity loss, particularly in identifying 
resilient habitats and predicting range 
dynamics under various warming scenarios [13, 
27, 34]. 
4. CHALLENGES AND BEST PRACTICES IN 
MAXENT IMPLEMENTATION 

Despite widespread adoption in ecological 
research, the MaxEnt model is frequently 
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subject to critical misapplications that 
compromise its predictive reliability. A 
comprehensive review of 108 peer-reviewed 
studies revealed that 36% failed to incorporate 
available presence-absence data despite 
evidence showing that such integration could 
enhance model accuracy by 15-20% [9]. 
Similarly, 58% of studies misinterpreted the 
logistic output as absolute occurrence 
probability rather than a relative suitability 
index, leading to substantial prediction bias 
(30-40%) when applying the default 0.5 
threshold without local calibration [40]. These 
implementation errors stem primarily from 
insufficient consideration of three fundamental 
aspects: environmental variable selection, 
managing multicollinearity, and interpreting 
output. 

Environmental variable selection remains a 
persistent challenge, with many studies 
incorporating excessive predictors without 
ecological justification. For instance, Warren et 
al. demonstrated that for annual plants like 
Arabidopsis thaliana, growing-season 
temperature (contributing 62.3% to model gain) 
substantially outperformed cold-season 
precipitation (12.1%) in ecological relevance, 
highlighting the need for biologically informed 
variable selection [5]. Equally problematic is the 
widespread neglect of multicollinearity, where 
highly correlated variables (∣r∣ > 0.8) can reduce 
model stability by up to 25% [41]. Practical 
solutions include calculating Variance Inflation 
Factors (VIF > 10 indicates severe collinearity) or 
performing principal component analysis during 
data preprocessing [42]. 

To address these issues, Zhang 
recommended a three-phase optimization 
framework [39]. In the pre-modelling phase, 
ecological niche factor analysis should identify 
biologically meaningful variables, 
complemented by techniques that reduce 
multicollinearity, such as variable clustering. 
During model calibration, researchers should 
employ k-fold cross-validation (typically 5-10 
folds) to assess variable importance and 
carefully select feature classes: linear features 
for small datasets (<25 occurrences), quadratic 
features for intermediate datasets (25-75 
occurrences), and hinge features for larger 
samples. Post-modelling validation must 

include comparison with independent field 
data and quantification of spatial uncertainty 
through jackknife tests. Merow et al. 
demonstrated that this rigorous approach 
increases AUC values by 0.15-0.25 compared to 
default implementations [14]. 

For practical application, Zhang emphasized 
three critical actions: first, replacing default 
parameters with biologically justified settings; 
second, transparent reporting of variable 
contribution metrics (e.g., permutation 
importance); and third, mandatory validation 
using independent datasets before spatial 
extrapolation [39]. When properly 
implemented, these protocols transform 
MaxEnt from a black-box tool into a robust 
framework for conservation decision-making, 
as evidenced by recent successes in predicting 
climate change impacts on the distributions of 
endangered species with greater than 85% field 
validation accuracy. This refined methodology 
enhances model reliability and ensures 
ecological relevance in biodiversity 
management applications across diverse 
ecosystems. 
5. CASE STUDY: INVASION RISK ASSESSMENT 
OF SUCKERMOUTH CATFISH IN VIETNAM 

The proliferation of invasive alien species in 
Vietnam poses substantial ecological and 
socioeconomic threats, with preventive 
measures proving far more economical than 
eradication efforts after establishment [43]. 
This study employs the MaxEnt modelling to 
assess the invasion potential of suckermouth 
catfish (Pterygoplichthys pardalis), a 
particularly destructive invasive species 
designated for priority control by Vietnam's 
Ministry of Natural Resources and Environment 
since 2018 [44]. This species has significant 
impacts on native ecosystems through multiple 
pathways: competitive displacement of 
indigenous fish species, alteration of benthic 
habitats due to its feeding behaviour, and 
substantial economic losses in aquaculture 
operations resulting from infrastructure 
damage [45]. 

Our analytical approach utilised MaxEnt 
version 3.4.1 implemented in R version 4.3.0, 
incorporating a comprehensive dataset of 
1,110 global occurrence records (including 71 
verified Vietnamese observations) obtained 
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from GBIF [46]. These records have undergone 
rigorous quality control, including spatial 
precision verification (with a minimum 
separation of 1 km) and duplicate removal. 
From an initial set of 19 bioclimatic variables 
(WorldClim v2.1 at 30 arc-second resolution), 
we selected seven non-collinear predictors (VIF 
< 5) based on ecological relevance: 
temperature seasonality (bio2), mean 
temperature of the wettest quarters (bio8), 
annual precipitation (bio12), the precipitation 
of the driest months (bio14), precipitation 
seasonality (bio15), and the precipitation of the 
warmest/coldest quarters (bio18-19). Model 
validation through repeated subsampling and 
bootstrap methods yielded excellent predictive 
performance (AUC = 0.916), with all R scripts 
and detailed analytical results publicly 
accessible at 
https://rpubs.com/Xiaoruan/Pterygoplichthys_
pardalis. 

Spatial analysis revealed four primary 
invasion hotspots encompassing approximately 
42% of Vietnam's freshwater ecosystems: (1) 
The Mekong Delta region, particularly the Tien 
and Hau River basins; (2) Southeastern 
provinces; (3) The Central Highlands; and (4) 
South-Central Coastal areas. These four zones 
share distinct environmental characteristics 
that facilitate invasion success, most notably 
precipitation during the warmest quarters 
(bio18: 300-400 mm, 58.3% contribution), 
diurnal temperature variation (bio2: > 6.8°C, 
13.2%), and precipitation in the driest months 
(bio14: 8-16 mm). The predominance of 
precipitation-related variables suggests 
heightened invasion risk during monsoon 
periods when increased hydrological 
connectivity promotes species dispersal. 

Based on these findings, we developed a 
comprehensive management framework 
comprising four key strategies: (1) Enhanced 
biosecurity measures focusing on ornamental 
fish trade hubs (particularly Ho Chi Minh City 
and Can Tho), including stricter import controls 
and quarantine procedures; (2) Climate-
sensitive aquaculture planning that avoids 
expansion in high-risk areas (bio18 > 400 mm 
or bio14 < 5 mm); (3) Collaborative initiatives 
with ornamental trade associations to minimize 
accidental releases, complemented by public 

education on ecological consequences; and (4) 
Implementation of an early detection system 
that monitors critical climatic variables 
(especially bio18 fluctuations) to facilitate 
timely intervention. This proactive, model-
informed approach demonstrates the potential 
for species distribution modelling to 
revolutionise invasive species management 
paradigms, with direct applicability to 
freshwater conservation efforts throughout 
Southeast Asia. 
6. CONCLUSION 

The power of MaxEnt stems from a 
philosophical truth that transcends ecology: 
"When information is incomplete, the most 
rational and objective approach to evaluating 
any issue is to use the fewest additional 
assumptions possible." This embodies a 
profound wisdom: allow the natural world to 
reveal itself through the available evidence, 
rather than forcing it to conform to our 
inherent and often unfair personal biases. 

This principled approach translates directly 
into practical efficacy, as demonstrated by its 
exceptional performance in species distribution 
modelling, where it consistently achieves high 
predictive accuracy, as evidenced by AUC 
values exceeding 0.9 in a substantial majority 
(78%) of reviewed studies. Our case study on P. 
pardalis invasion risks in Vietnam highlights its 
effectiveness, identifying four high-probability 
invasion zones (the Mekong Delta, Southeast, 
Central Highlands, and South-Central Coastal 
regions) driven primarily by the precipitation of 
the warmest quarter (bio18: 58.3%) and the 
diurnal temperature range (bio2: 13.2%). 
Despite limited local occurrence data (71 
verified records among 1,110 global 
observations), the model demonstrated robust 
performance, underscoring its value for early-
warning systems in data-scarce regions. 

The utility of MaxEnt extends beyond 
invasive species management to advanced 
conservation planning, achieving 94% accuracy 
in habitat identification for endangered species 
(e.g., X. vietnamensis) and projecting range 
shifts for climate-vulnerable species (e.g., P. 
uncia) with 89% concordance to field 
observations. Paleo-distribution 
reconstructions have also revealed critical 
biogeographic insights, such as previously 
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unrecognised refugia for T. hemsleyanum. 
Notwithstanding these strengths, challenges 
persist, including misinterpretation of logistic 
outputs (leading to 30-40% probability 
overestimation) and inadequate handling of 
variable multicollinearity (reducing model 
stability by up to 25% when correlations exceed 
0.8). 

To operationalise these insights, our 
proposed P. pardalis management framework 
demonstrates practical applications, 
integrating biosecurity measures, climate-
informed aquaculture restrictions, industry 
partnerships, and real-time monitoring. To 
further enhance MaxEnt's utility and address 
its limitations, future research should prioritise 
(1) incorporating dispersal dynamics, (2) 
integrating high-resolution CMIP6 climate 
projections, and (3) developing hybrid models 
that merge MaxEnt's correlative strengths with 
mechanistic approaches. Addressing these 
priorities will ensure MaxEnt remains a vital 
tool for biodiversity conservation amid rapid 
global change, particularly in vulnerable 
tropical ecosystems such as those in Vietnam. 
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