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In this research, the dead trees were defined as the standing trees that died between the two occasions at which 

measurements were taken. The data on 300 subplots from 12 permanent sample plots were collected. The 

response variable was the number of dead trees per subplot. The results suggest that we successfully developed 

the mortality model by using both generalized linear and generalized linear mixed models for count data to 

address the problem of overdispersion. Arithmetic mean diameter of the subplot, plot basal area, and provinces 

as a categorical variable were found to be the most significant explanatory variable. With the generalized linear 

model, we found that the Negative Binomial GLM was the most appropriate model for predicting the number 

of recruitment for three groups. From using the provinces as a grouping variable, we realized that the mean 

numbers of dead trees was different in the four different locations, namely the number of dead trees for group 1 

and group 2 in Thua Thien Hue were the highest, while in Ha Tinh these were the lowest. With the generalized 

linear mixed model, the Negative Binomial GLMM solves overdispersion by treating a plot as a random effect. 

The GLMM with random intercept was selected as the equation for the direct prediction of dead trees 

across each of the two species groups, and for N. melliferum. The GLMM with a random slope was chosen 

for S. wightianum. 

Keywords: Generalized linear model, generalized linear mixed model, mortality model, Negative 

Binomial GLM, tropical rainforests. 
 

1. INTRODUCTION 

Natural mortality of trees is a crucial 

process that determines forest dynamics 

(Rüger et al., 2011). When a tree dies, the 

reduced competition benefits the trees near the 

dead tree, positively affecting their growth 

(Yang et al, 2003); in addition, gaps created by 

dead canopy trees are later filled by new trees 

(Oliver and Larson, 1996). McCarthy (2001) 

notes that these gap dynamics are crucial 

determinants of the structure and composition 

of a forest stand. For these reasons, the 

mortality process should be considered in stand 

simulation models. However, modeling 

mortality is difficult due to the stochastic 

nature of mortality events; standing death may 

be caused by intrinsic senescence (Carey et al., 

1994) or extrinsic factors such as disease, 

insects, fungi, and wind. In previous studies, 

several statistical methods have been utilized 

to develop mortality models, including the 

logistic regression model (Monserud and 

Sterba, 1999), the two-step approach (Eid and 

Tuhus, 2001; Álvarez González et al., 2004; 

Diéguez-Aranda et al., 2005), the three-step 

approach (Fridman and Stahl, 2001; Meng et 

al., 2003), and neural networks (Hasenauer et 

al., 2001).  

Moreover, as recruitment data, mortality 

data consist of many zeros. Fortin and  Deblois 

(2007), for instance, demonstrated that fitting a 

traditional Poisson distribution to this type of 

data can underestimate the occurrence of zeros 

or overestimate the occurrence of larger 

counts. One way to solve this issue is utilizing 

a method similar to conditional functions. 

Fortin and Deblois (2007) predicted tree 

recruitment with zero-inflated models, and 

Zhang et al. (2012) applied negative binomial 

mixture models (zero-inflated negative 

binomial, and Hurdle negative binomial 

models) to predict tree recruitments of Chinese 

pine trees (Pinus tabulaeformis).  

However, in the present study, we did not 

use zero-inflated models because of two 

reasons: (1) A zero-inflated model assumes 

that the zero observations have to come from 

two different sources, namely “structural” and 
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“sampling” (Hu et al., 2011). The sampling 

zeros are assumed to occur by chance, while 

structural zeros are observed due to some 

specific structure in the data. (2) Zero-inflated 

models are recommended if the overdispersion 

parameter is larger than 15 or 20 (Zuur  et al., 

2009), what was not the case with the data of 

the 12 sample plots under study. 

For this study, due to the low number of 

plots compared to the large number of species 

the purpose of this research is not to tackle the 

mortality of each single species, but rather, to 

concentrate on predicting tree mortality of 

particular species groups: across all tree 

species, all locally (province) important tree 

species, and important species spread over 

provinces. Two approaches were used here, 

generalized linear models (Poisson, Quasi-

Poisson and Negative Binomial models), and 

generalized linear mixed effects models 

(Negative Binomial mixed model), the latter to 

take random plot effects into account.  

2. RESEARCH METHODOLOGY 

2.1. Study area  

Measurements were taken in a tropical 

rainforest, in four different provinces of 

Central region of Vietnam: Ha Tinh province, 

Thua Thien Hue province, Binh Dinh province 

and Khanh Hoa province. There were three 

plots in each of the four provinces. 

2.2. Data collection 

In this research, 12 permanent sample plots 

(PSPs) in four provinces were selected from 

the network of PSPs which was established by 

the Forest Inventory and Planning Institute 

(FIPI) of Vietnam. Data from 2005 inherited, 

and re-measurement of these plots was done by 

the author in 2012, 2013. 

Each plot has a square shape (100 m x 100 

m2) and is divided into twenty five 20 m x 20 

m quadrats. It was aligned according to a 

magnetic-north direction and has four major 

corner posts made of concrete. All trees equal 

to or larger than 6 cm diameter at breast height 

(DBH ≥ 6 cm) were identified by species and 

permanently marked using a white metal tag. 

In 2005: On each plot, all trees in each plot 

with a diameter at breast height from 6 cm 

(DBH  ≥ 6 cm) were marked and, identified by 

species; their diameter was measured at 1.3 m 

from the ground. The data within the plot were 

assigned to their 20 m x 20 m quadrat. 

In 2012 and 2013: Measurements were 

repeated on all 12 plots and standing dead trees 

were also recorded. 

2.3. Data analysis 

2.3.1. Species group 

There are a large number of tree species in 

natural tropical rainforests. Several species 

appear more frequently, some occur with only 

low frequency. For that reason, species might 

be aggregated into some groups to reduce the 

number of mortality models and to avoid the 

need for adding data for species with 

insufficient number of observations. For our 

study, simply the importance value index (IVI) 

was used to determine a group of most 

important species.  

Important tree species having IVI ≥ 5% in 

pooled data from three plots in each province 

were utilized to construct mortality model. 

2.3.2. Mortality model 

In our case, the data on 300 subplots from 

12 plots were used to fit the mortality model. 

The response variable was the dependent 

variable was the number of dead trees, which 

are the standing trees that died between the two 

occasions at which measurements were taken. 

Explanatory variables were measured at the 

beginning of the period, including arithmetic 

mean diameter of the subplot (DBH), subplot 

and plot basal area (BALsubplot, BALstand), 

subplot density (the number of trees on each 

subplot) (N), and provinces as a categorical 

variable (provincecode).  
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- Generalized linear model (GLM) 

The GLM consists of two components, the 

response variable and the link function. The 

link function defines how the mean of the 

dependent variable and the linear combination 

of the explanatory variables are connected 

(Faraway, 2006).  

In this study, a Poisson GLM (log link), 

Quasi-GLM and Negative Binomial were used, 

where the Poisson GLM (log link) was used to 

detect overdispersion.  

In the Poisson model, the variance equaled 

ϕ, with mean and dispersion parameter ϕ.  

The following formula (Zuur et al., 2009) was 

used in the calculation:  

                       ∅ =
�

���
          (1)  

Where: D is the residual deviance and n – p 

is degrees of freedom. n is the number of 

observations, and p is the number of regression 

parameters (intercept and slopes) in the model. 

If ϕ equals 1, there is no overdispersion and we 

have the Poisson GLM; if ϕ is larger than 1, 

this is evidence for the suggestion of 

overdispersion (Zuur et al., 2009), the Quasi-

Poisson GLM and Negative Binomial models 

were used: 

log(��) = �� + �� + ����� + ����� + ����� + ����� + log	(�����)               (2) 

	��	�� = exp	(�� + �� + ����� + ����� + ����� + ����� + log(�����))              (3) 

Where:   

x1i to x4i are independent variables of the ith
 

subplot (DBH, BALsubplot, BALstand, N) and αk is 

the effect of province k (k = 1, 2, 3), αk = 0 for 

Ha Tinh; 

0 to 4 and the αk are the parameters to be 

estimated; 

log(timei) is an offset factor. 

To estimate the regression parameters of the 

GLM, a maximum likelihood estimation was 

used (Zuur et al., 2013). The procedure for 

selecting Poisson, Quasi-Poisson, and Negative 

Binomial models followed Zuur et al. (2009).  

- Generalized linear mixed model (GLMM) 

Generalized linear mixed models are an 

extension of a GLM in which the linear 

predictor contains random effects in addition to 

the fixed effects. The random effects can 

account for the correlation between 

observations from the same plot in a province. 

In this study, a random plot effect was added to 

the intercept (equation 4), the slope (equation 

5), or both intercept and slope (equation 6) of 

each model. The general equation is as follows: 

log����� = ��� + ��� + �� + �1. �1�� + �2. �2�� + �3. �3�� + �4. �4�� + log(������) (4) 

log����� = �� + �� + ��1 + ����. �1�� + (�2 + ���). �2�� + (�3 + ���). �3�� + (�4 +

���). �4�� + log(������)         (5) 

log����� = (�� + ��) + �� + ��1 + ����. �1�� + (�2 + ���). �2�� + (�3 + ���). �3�� + (�4 +

���). �4�� + log(������)         (6) 

To assess goodness of fit of the data in the 

GLM and GLMM models, Pearson’s χ2 was 

used. The parameter estimations for the 

GLMM in this chapter were fitted with 

glmmPQL in “MASS” package available from 

the open source statistical software R.  

All hypothesis testing was performed at the 

α = 0.05 significance level. 

3. RESULTS 

3.1. Results of the GLM 
A total of 1323 dead trees belonging to 189 

species were counted at the four locations. The 

number of dead trees for all species and all 

important species counted per plot ranged from 

21 to 221 and from 10 to 133 respectively. 

This was in correspondence with the number 

of species, which was respectively, from 17 to 

58 and from 8 to 21 (Table 1). 
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Table 1. Descriptive statistics of the mortality data used for the model development 

Province Plot 
No. 

trees 
���	�������� 
(cm) 

Stand basal 
area (m2/ha) 

All tree species 
All important tree 

species 

No. dead 
trees 

No. 
species 

No. dead 
trees 

No. 
species 

Ha Tinh 

1 416 20.95 18.65 21 17 10 8 

2 352 19.95 13.84 69 33 33 9 

3 391 19.05 15.54 66 37 25 9 

Total     156 66 68 14 

Thua Thien 
Hue 

4 932 17.35 33.04 154 44 109 21 

5 855 18.20 33.50 77 41 45 19 

6 1092 16.53 34.72 190 54 133 21 

Total     421 73 287 21 

Binh Dinh 

7 1151 16.05 31.01 221 57 130 17 

8 967 16.62 31.72 184 58 108 17 

9 893 18.34 32.44 96 43 47 12 

Total     501 86 285 17 

Khanh 
Hoa 

10 800 17.53 28.95 35 18 25 9 

11 782 17.52 24.46 82 27 59 9 

12 901 17.47 28.73 128 27 99 11 

Toal     245 42 183 11 

Total (4 prov.)    1323 189 823 49 
 

The fitted Poisson GLM model for two 

species groups (all tree species and all 

important tree species) supported evidence for 

overdispersion through the ratio of deviance to 

degrees of freedom larger than 1 (2.79 and 

2.38, respectively). Thus, we refitted the data 

to correct the standard errors using Quasi-

Poisson and Negative Binomial GLMs.  

The estimated parameters, standard errors, 

and the p-values of Poisson, Quasi-Poisson, 

and Negative Binomial models are represented 

in table 2. The deviance across all species and 

all important species was the lowest when 

analyzed with a Negative Binomial GLM, 

leading us to conclude that the Negative 

Binomial model was preferrable over the 

Poisson and Quasi-Poisson models. The 

Negative Binomial GLM is given as follows: 

 

For all species: 
log(��) = �� + �� + ����������� + log(�����)(7)  

and for all important species:  
log(��) = �� + �� + ������ + ����������� +

	+	log	(�����)         (8) 
In the same way, the Negative Binomial 

GLM was the selected model for three 

important species (Syzygium wightianum, 

Diospyros sylvatica and Nephelium 

melliferum) spread over three or four 

provinces: 
S. wightianum: 

log(��) = �� + �� + ����������� + log	(�����)  
D. sylvatica:  

log(��) = �� + �� + log	(�����)      (10) 

N. melliferum:  

log(��) = �� + log	(�����)       (11) 

Estimated parameters and p-value values of 

the Poisson, Quasi-Poisson and Negative 

Binomial equations are shown in table 2. 

(9) 
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Table 2. GLM (Poisson, Quasi-Poisson, Negative Binomial) results for standing dead trees (0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05) 

Objects Variables 
Paramete

rs 
Poisson Quasi-Poisson Negative Binomial 

Parameter estimates Pr(>|z|) Parameter estimates Pr(>|z|) Parameter estimates Pr(>|z|) 

All tree 
species 

Intercept 0 0.9764 0.0152* 0.3103 0.614253 0.4251 0.4287 

DBH 1 -0.0306 0.0019 ** - - - - 

BALstand 2 -0.0969 1.02e-05 *** -0.0999 0.010019 * -0.1082 0.0012 ** 
N 3 -0.0075 0.0046 ** - - - - 
Thua Thien Hue  

αk 
2.8502 5.10e-12 *** 2.7961 0.000130 *** 2.9610 1.73e-06 *** 

Binh Dinh 2.8215 2.68e-14 *** 2.7672 2.39e-05 *** 2.9166 1.33e-07 *** 
Khanh Hoa 1.6269 3.19e-09 *** 1.6007 0.000901 *** 1.7165 2.99e-05 *** 

AIC  1684.3 NA 1457.9 
Deviance  816.81 831.72 322.56 

All 
important  

tree 
species 

Intercept 0 -0.1060 0.8359 -1.2507 0.0033 ** 0.1144 0.8782 
DBH 1 -0.0433 0.0004 *** -0.0429 0.0280 * -0.0396 0.0287 * 
BALstand 2 -0.0718 0.0095 ** - - -0.0910 0.0245 * 
Thua Thien Hue  

αk 

2.6382 3.24e-07 *** 1.3537 2.24e-09 *** 3.0239 5.53e-05 *** 
Binh Dinh 2.4632 1.05e-07 *** 1.3239 6.41e-09 *** 2.7783 3.51e-05 *** 
Khanh Hoa 1.7083 8.98e-07 *** 0.8861 0.0002 *** 1.9593 9.33e-05 *** 

AIC  1389.9 NA 1233.6 
Deviance  700.32 706.97 319.22 

S. 
wightian

um  

Intercept 0 -2.3011 0.0512. -2.3011 0.0615. -2.2846 0.0566. 
BALstand 1 -0.1859 0.0059** -0.1859 0.0081** -0.1869 0.0063** 
Thua Thien Hue  

αk 
5.4731 6.58e-05*** 5.4731 0.0002*** 5.4926 8.15e-05*** 

Binh Dinh 4.7208 0.0002*** 4.7208 0.0004*** 4.7376 0.0002*** 
Khanh Hoa 4.7277 8.96e-07*** 4.7277 3.48e-06*** 4.7409 1.21e-06*** 

AIC  375.95 NA 377.85 
Deviance  216.95 216.95 210.84 

D. 
sylvatica 

Intercept 0 -6.5974 6.72e-11*** -6.310 6.69e-08*** -6.3090 4.12e-10*** 
BALsubplot 1 0.4233 0.0384* - - - - 
Binh Dinh 

αk 
2.8643 0.0054** 3.135 0.0071** 3.1370 0.0026** 

Khanh Hoa 2.9082 0.0047** 3.135 0.0071** 3.1280 0.0027** 
AIC  235.37  NA 231.26 

Deviance  152.10  155.85 106.08 
N. 

melliferu
m 

Intercept 0 -4.1127 < 2e-16*** -4.1127 < 2e-16*** -4.1101 < 2e-16*** 
AIC  176.37 NA 176.36 

Deviance  124.77 124.77 98.79 
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From the Negative Binomial model output, 

the coefficient of BALstand was always negative 

(all species, all important species, and S. 

wightianum) denoting that the number of dead 

trees declined as the stand basal area became 

larger, or 0 (i.e. nonsignificant) for the other 

two species (Table 2). Similarly, the number of 

dead trees of all important species decreased 

with an increasing DBH, indicating a higher 

number of dead trees among small, as opposed 

to larger trees. This number should rise in age-

related senescence as the tree becomes older; 

however, the data in our model did not 

demonstate this relationship. The number of 

dead trees for the two groups and S. 

wightianum was found to be the highest in 

Thua Thien Hue in comparison with Ha Tinh, 

Binh Dinh, and Khanh Hoa. Similarly, D. 

sylvatica, which appeared in three locations, 

had a much larger number of dead trees in 

Binh Dinh and Khanh Hoa than in Ha Tinh. 

As mentioned above, for dealing with 

different time intervals of each plot in each 

province, adding an offset variable (as 

log(time)) for the model. To avoid plotting two 

lines in each location, we calculate the annual 

number of recruits per province. Thus, the 

annual number of dead trees can be estimated 

using the Negative Binomial GLM for all 

species, for all important species per province 

and for four important species occurring on all 

plots in three/four locations are: 

For all species (with k = 2.487) 

Ha Tinh:  log(��/�����) = 0.4251 − 0.1082���������      (12) 

Thua Thien Hue: log(��/�����) = 0.4251 − 0.1082��������� + 2.9610  (13) 

Binh Dinh: log(��/�����) = 0.4251 − 0.1082��������� + 2.9166   (14) 

Khanh Hoa: log(��/�����) = 0.4251 − 0.1082��������� + 1.7165   (15) 

For all important species (with k = 1.993): 

Ha Tinh: log(��/�����) = 0.1144 − 0.0396���� − 0.0910���������    (16) 

Thua Thien Hue:  

log(��/�����) = 0.1144 − 0.0396���� − 0.0910��������� + 3.0239  (17) 

Binh Dinh: log(��/�����) = 0.1144 − 0.0396���� − 0.0910��������� + 2.7783  (18) 

Khanh Hoa:log(��/�����) = 0.1144 − 0.0396���� − 0.0910��������� + 1.9593 (19) 

For S. wightianum (k = 13.786): 

Ha Tinh: log(��/�����) = −2.2846 − 0.1869���������     (20) 

Thua Thien Hue: log(��/�����) = −2.2846 − 0.1869��������� + 5.4926  (21) 

Binh Dinh: log(��/�����) = −2.2846 − 0.1869��������� + 4.7376    (22) 

Khanh Hoa: log(��/�����) = −2.2846 − 0.1869��������� + 4.7409    (23) 

For D. sylvatica (k = 0.667): 

Ha Tinh: log(��/�����) = −6.3090       (24) 

Binh Dinh: log(��/�����) = −6.3090 + 3.1370      (25) 

Khanh Hoa: log(��/�����) = −6.3090 + 3.1280      (26) 

and for N. melliferum (k = 0.772): log(��/�����) = −4.1101    (27) 
 

3.2. Results of the GLMM 

The significant negative effects of the DBH 

(for the dead trees of all important species) and 

BALstand (for the dead trees of two species 

groups) as predicted by the Negative Binomial 

GLM became insignificant under the Negative 

Binomial GLMM, leading to removal of those 

variables from the model. Thus, for all species 

and all important species, the respective fixed 

effects models (7) and (8), were compared to 

the following mixed effects models: 



Silviculture 
 

JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY NO. 5 - 2018                9 

log����� = ��� + ��� + �� + log	(������)       (28) 

log����� = ��� + ��� + (�� + ���) + log	(������)     (29) 

log����� = �� + (�� + ���) + log	(������)      (30) 

For S. wightianum, the fixed effects model (3.3) was compared to four mixed effects models: 

log����� = (�� + ��) + ������������ + �� + log	(������)    (31) 

log����� = �� + (�� + ���)���������� + �� + log	(������)    (32) 

log����� = (�� + ��) + ������������ + (�� + ���) + log	(������)   (33) 

log����� = �� + ������������ + (�� + ���) + log	(������)    (34) 
 

While for D. sylvatica, the fixed effects 

model (10), along with candidate mixed 

effects models (28), (29), and (30) were 

assessed, and for N. melliferum, the fixed 

effects model (11) was compared to only one 

mixed effects model (35): 

log����� = (�� + ��) + log	(������) (35) 

Pearson’s 2 values of fixed and mixed 

models for predicting the number of dead trees 

across all species, all important species, one 

important species (S. wightianum) occurring in 

four, and two others (D. sylvatica, N. 

melliferum) found in three locations are 

presented in table 3. 

 

Table 3. A comparison of Pearson’s 2 values between the fixed effects model 
and the mixed effects models. Selected models are bolded 

Objects n Equation Model specification 
Pearson’s 2 

Negative Binomial 
GLMM 

All tree species 300 

3.1 Fixed effects model (GLM) 330.35 
3.22 FM + plot intercept 289.50 

3.23 
FM + plot intercept + plot 
slope (provincecode) 

289.55 

3.24 
FM + plot slope 
(provincecode) 

289.55 

All important tree 
species 

300 

3.2 Fixed effects model (GLM) 324.64 
3.22 FM + plot intercept 289.59 

3.23 
FM + plot intercept + plot 
slope (provincecode) 

289.68 

3.24 
FM + plot slope 
(provincecode) 

289.68 

S. wightianum  300 

3.3 Fixed effects model (GLM) 312.14 
3.25 FM + plot intercept 300.00 

3.26 FM + plot slope (BALstand) 300.00 

3.27 
FM + plot intercept + plot 
slope (provincecode) 

298.13 

3.28 
FM + plot slope 
(provincecode) 

298.13 

D. sylvatica 225 

3.4 Fixed effects model (GLM) 216.80 
3.22 FM + plot intercept 225.00 

3.23 
FM + plot intercept + plot 
slope (provincecode) 

224.99 

3.24 
FM + plot slope 
(provincecode) 

224.99 

N. melliferum 225 
3.5 Fixed effects model (GLM) 235.47 

3.29 FM + plot intercept 223.50 
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Table 3 presents a comparison of selected 

models based on Pearson’s 2 values. Here, we 

see that the Pearson’s 2 statistic for the fixed 
model is significantly larger than that of mixed 
effects model, with the exception of one 
important species appearing in three places (D. 
sylvatica). The Negative Binomial GLMM 
performed better than the Negative Binomial 
GLM. In similar fashion to the recruitment 
model, the mixed models with random 
intercept/random slope (provincecode) was not 
different from the mixed models with random 
slope (provincecode) effects. Therefore, the 
mixed model with a random slope was chosen 
for S. wightianum for it was simpler, while the 
mixed model with random intercept was 
selected as the equation for the direct 
prediction of dead trees across each of the two 
species groups, and for N. melliferum, because 

it had the smallest Pearson’s 2 value (Table 

3). For D. sylvatica, the fixed model using only 
the provincecode as a predictor (Equation 3.4) 
was used. 

The summary statistics for the parameter 
estimations, standard deviation errors, and the 
p-values for the Negative Binomial GLMM are 
reported in table 4. In general, for the two 
species groups, the number of dead trees in 
Thua Thien Hue and Binh Dinh was much 
greater than that in Ha Tinh, with the single 
exception of Khanh Hoa, where there was no 
significant difference when compared with Ha 
Tinh (p > 0.05). For S. wightianum, in Thua 
Thien Hue, Binh Dinh, and Khanh Hoa were 
significantly higher numbers of mortality in 
comparison with Ha Tinh.  

For N. melliferum, there was no difference 
in the number of both recruits and dead trees in 
three provinces Ha Tinh, Binh Dinh, and 
Khanh Hoa.  

The variance component of the random plot 
effects in Table 4 was rather small (from 7.22% 
to 25.77%); however, the random effect 
demonstrated evidence of unexplained variation 
at the plot level and provided a suitable 
adjustment for dispersion (the overdispersion 
parameter was more or less 1).  

4. DISCUSSION 
The Negative Binomial regression for the 

mortality model expressed in this paper used 
variables BALstand and provinceocde for all 
species, and DBH, BALstand and provincecode 
for all important species as predictors in 
predicting mortality. The DBH had a negative 
sign, resulting in the high mortality of small 
diameter trees and suggesting that suppressed 
trees are more likely to be eliminated from 
stand level competition (Adame et al., 2010); 
the negative DBH coefficient also indicated 
that stand mortality is more likely in forest 
stands with many small trees as compared to 
those with larger trees (Juknys et al., 2006). 
This result was supported by Zhang et al. 
(2014) who likewise found that stand mortality 
was negatively associated with a stand 
arithmetic mean diameter among Chinese 
pines (Pinus tabulaeformis).  

The stand basal area was suggested as a 
measure of two-sided competition that can take 
into account both the vertical competition for 
light and the horizontal competition for rooting 
space, water, and nutrients (Yang et al., 2003). 
This indicator is a good measure of stand 
crowding because it accounts for both tree size 
and density. Trees in a stand with a larger basal 
area will experience more competition than 
those in another stand with a smaller stand 
basal area (Yang et al., 2003). The number of 
dead trees should grow along with the increase 
in the stand basal area as a result of 
competition pressure. In this study, however, 
the negative coefficient of the stand basal area 
demonstrated that with an increasing stand 
basal area, the number of dead trees decreased. 
This may imply that inter-specific competition 
does not cause tree mortality for these stands. 
Another study from Bravo et al. (2001) found 
that stand basal area was an insignificant 
predictor of Douglas-fir mortality across a 
range of stands. 

Plot level random effects on mortality 
models can address some of the unexplained 
variation in these processes due to unobserved 
plot level variables, which included 
topography, soil, microclimate, nutrients, and 
moisture (Ma et al., 2013). 
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Table 4. Parameter estimates for the Negative Binomial GLMM across all species, all important species,  

and important species occurring in four or three provinces 
 

Objects Equation 

Fixed effects Variance components 
variation 

explained 

by the plot 

Overdispersion 

parameter 
Variables Parameters 

Parameter 

estimates 

Std-

error 
Pr(>|z|) ran-in ran-slop res 

All species 5.56 

Intercept 0 -1.3576 0.2586 0.0000 

0.1661 - 0.8138 16.95 0.9814 
Thua Thien Hue  

αk 

1.0295 0.3600 0.0212 

Binh Dinh 1.2125 0.3595 0.0097 

Khanh Hoa 0.4374 0.3627 0.2623 

All 

important 

species 

5.56 

Intercept 0 -2.1680 0.3048 0.0000 

0.2200 - 0.7779 22.04 0.9817 Thua Thien Hue  

αk 

1.4325 0.4192 0.0091 

Binh Dinh 1.4350 0.4191 0.0090 

Khanh Hoa 0.9419 0.4218 0.0560 

S. 

wightianum 
5.62 

Intercept 0 -2.5911 1.2212 0.0347 

- 0.3476 1.0013 25.77 1.0141 

BALstand 1 -0.1670 0.0696 0.0475 

Thua Thien Hue  

αk 

5.1282 1.4038 0.0084 

Binh Dinh 4.2865 1.3349 0.0152 

Khanh Hoa 4.5158 0.9926 0.0026 

N. 

melliferum 
5.63 Intercept 0 -4.1223 0.2257 0.0000 0.0762 - 0.9793 7.22 1.0022 
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5. CONCLUSION 

For this study, overdispersion becomes an 

issue as a result of the huge number of zero 

counts. Because it can affect the regression 

parameters, overdispersion is dealt with here 

by using a generalized linear mixed model, 

treating a plot factor as a random effect and 

integrating the evoked overdispersion by this 

factor into the model. The Negative Binomial 

GLMM therefore appeared to be a suitable 

model due to its ability to capture 

overdispersion and within-plot correlation. 

This analysis illustrates that appropriate 

statistical models are effective in tackling the 

challenge of modeling mortality and the 

association of dead trees with data that has a 

high frequency of zero captures. 
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XÂY DỰNG MÔ HÌNH CÂY CHẾT CHO RỪNG TỰ NHIÊN TRẠNG THÁI III 

Ở 4 TỈNH MIỀN TRUNG VIỆT NAM 
 

Cao Thị Thu Hiền 
Trường Đại học Lâm nghiệp 

 

SUMMARY 
Cây chết trong nghiên cứu này là những cây chết đứng giữa 2 chu kỳ đo. Số liệu từ 300 phân ô của 12 ô đo đếm 

(ODD) được dùng để xây dựng mô hình cây chết. Biến phụ thuộc là số cây chết/phân ô. Kết quả cho thấy có 

thể dùng mô hình tuyến tính tổng quát và mô hình tuyến tính tổng quát hỗn hợp để mô phỏng vì hai mô hình 

này giải quyết được vấn đề phân tán của số liệu. Với mô hình tuyến tính tổng quát (GLM), phương trình 

Negative Binomial GLM là phù hợp nhất để dựa đoán số cây chết cho 3 nhóm. Đường kính, tiết diện ngang 

lâm phần và biến phân nhóm “tỉnh” là các biến có ảnh hưởng rõ ràng nhất tới mô hình dự đoán cây chết. Từ 

biến phân nhóm cho thấy số cây chết ở các tỉnh là khác nhau, số cây chết của nhóm 1 và nhóm 2 nhiều nhất ở 

Thừa Thiên Huế và ít nhất là ở Hà Tĩnh. Với mô hình tuyến tính tổng quát hỗn hợp (GLMM), hàm Negative 

Binomial GLMM đã loại bỏ được những giá trị phân tán. GLMM với hiệu ứng ngẫu nhiên là ODD cho hệ số tự 

do được lựa chọn để dự đoán số cây chết cho nhóm 1, nhóm 2 và loài Trường vải. GLMM với hiệu ứng ngẫu 

nhiên là ODD cho hệ số hồi quy được lựa chọn để dự đoán số cây chết cho Trâm trắng. 

Từ khóa: Mô hình cây chết, Negative Binomial GLM, phương trình tuyến tính tổng quát, phương trình 

tuyến tính tổng quát hỗn hợp, rừng mưa nhiệt đới. 
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