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CONSTRUCTING MORTALITY MODELS FOR NATURAL FOREST
STATE III IN FOUR PROVINCES OF THE CENTRAL REGION,
VIETNAM
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In this research, the dead trees were defined as the standing trees that died between the two occasions at which
measurements were taken. The data on 300 subplots from 12 permanent sample plots were collected. The
response variable was the number of dead trees per subplot. The results suggest that we successfully developed
the mortality model by using both generalized linear and generalized linear mixed models for count data to
address the problem of overdispersion. Arithmetic mean diameter of the subplot, plot basal area, and provinces
as a categorical variable were found to be the most significant explanatory variable. With the generalized linear
model, we found that the Negative Binomial GLM was the most appropriate model for predicting the number
of recruitment for three groups. From using the provinces as a grouping variable, we realized that the mean
numbers of dead trees was different in the four different locations, namely the number of dead trees for group 1
and group 2 in Thua Thien Hue were the highest, while in Ha Tinh these were the lowest. With the generalized
linear mixed model, the Negative Binomial GLMM solves overdispersion by treating a plot as a random effect.
The GLMM with random intercept was selected as the equation for the direct prediction of dead trees
across each of the two species groups, and for N. melliferum. The GLMM with a random slope was chosen
for S. wightianum.

Keywords: Generalized linear model, generalized linear mixed model, mortality model, Negative

Binomial GLM, tropical rainforests.

1. INTRODUCTION

Natural mortality of trees is a crucial
process that determines forest dynamics
(Riiger et al., 2011). When a tree dies, the
reduced competition benefits the trees near the
dead tree, positively affecting their growth
(Yang et al, 2003); in addition, gaps created by
dead canopy trees are later filled by new trees
(Oliver and Larson, 1996). McCarthy (2001)
notes that these gap dynamics are crucial
determinants of the structure and composition
of a forest stand. For these reasons, the
mortality process should be considered in stand
simulation models. However, modeling
mortality is difficult due to the stochastic
nature of mortality events; standing death may
be caused by intrinsic senescence (Carey et al.,
1994) or extrinsic factors such as disease,
insects, fungi, and wind. In previous studies,
several statistical methods have been utilized
to develop mortality models, including the
logistic regression model (Monserud and
Sterba, 1999), the two-step approach (Eid and

Tuhus, 2001; Alvarez Gonzalez et al., 2004;

Diéguez-Aranda et al., 2005), the three-step
approach (Fridman and Stahl, 2001; Meng et
al., 2003), and neural networks (Hasenauer et
al.,2001).

Moreover, as recruitment data, mortality
data consist of many zeros. Fortin and Deblois
(2007), for instance, demonstrated that fitting a
traditional Poisson distribution to this type of
data can underestimate the occurrence of zeros
or overestimate the occurrence of larger
counts. One way to solve this issue is utilizing
a method similar to conditional functions.
Fortin and Deblois (2007) predicted tree
recruitment with zero-inflated models, and
Zhang et al. (2012) applied negative binomial
models  (zero-inflated

mixture negative

binomial, and Hurdle negative binomial
models) to predict tree recruitments of Chinese
pine trees (Pinus tabulaeformis).

However, in the present study, we did not
use zero-inflated models because of two
reasons: (1) A zero-inflated model assumes
that the zero observations have to come from

two different sources, namely “structural” and
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“sampling” (Hu et al, 2011). The sampling
zeros are assumed to occur by chance, while
structural zeros are observed due to some
specific structure in the data. (2) Zero-inflated
models are recommended if the overdispersion
parameter is larger than 15 or 20 (Zuur et al.,
2009), what was not the case with the data of
the 12 sample plots under study.

For this study, due to the low number of
plots compared to the large number of species
the purpose of this research is not to tackle the
mortality of each single species, but rather, to
concentrate on predicting tree mortality of
particular species groups: across all tree
species, all locally (province) important tree
species, and important species spread over
provinces. Two approaches were used here,
generalized linear models (Poisson, Quasi-
Poisson and Negative Binomial models), and
generalized linear mixed effects models
(Negative Binomial mixed model), the latter to
take random plot effects into account.

2. RESEARCH METHODOLOGY
2.1. Study area

Measurements were taken in a tropical
rainforest, in four different provinces of
Central region of Vietnam: Ha Tinh province,
Thua Thien Hue province, Binh Dinh province
and Khanh Hoa province. There were three
plots in each of the four provinces.

2.2. Data collection

In this research, 12 permanent sample plots
(PSPs) in four provinces were selected from
the network of PSPs which was established by
the Forest Inventory and Planning Institute
(FIPI) of Vietnam. Data from 2005 inherited,
and re-measurement of these plots was done by
the author in 2012, 2013.

Each plot has a square shape (100 m x 100
m?) and is divided into twenty five 20 m x 20
m quadrats. It was aligned according to a
magnetic-north direction and has four major

corner posts made of concrete. All trees equal

to or larger than 6 cm diameter at breast height
(DBH > 6 cm) were identified by species and
permanently marked using a white metal tag.

In 2005: On each plot, all trees in each plot
with a diameter at breast height from 6 cm
(DBH > 6 cm) were marked and, identified by
species; their diameter was measured at 1.3 m
from the ground. The data within the plot were
assigned to their 20 m x 20 m quadrat.

In 2012
repeated on all 12 plots and standing dead trees

and 2013: Measurements were

were also recorded.
2.3. Data analysis
2.3.1. Species group

There are a large number of tree species in
natural tropical rainforests. Several species
appear more frequently, some occur with only
low frequency. For that reason, species might
be aggregated into some groups to reduce the
number of mortality models and to avoid the
with
insufficient number of observations. For our

need for adding data for species
study, simply the importance value index (/V1)
was used to determine a group of most
important species.

Important tree species having IVl > 5% in
pooled data from three plots in each province
were utilized to construct mortality model.
2.3.2. Mortality model

In our case, the data on 300 subplots from
12 plots were used to fit the mortality model.
The response variable was the dependent
variable was the number of dead trees, which
are the standing trees that died between the two
occasions at which measurements were taken.
Explanatory variables were measured at the
beginning of the period, including arithmetic
mean diameter of the subplot (DBH), subplot
and plot basal area (BALguppios BALsana)s
subplot density (the number of trees on each
subplot) (N), and provinces as a categorical
variable (provincecode).
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- Generalized linear model (GLM)

The GLM consists of two components, the
response variable and the link function. The
link function defines how the mean of the
dependent variable and the linear combination
of the explanatory variables are connected
(Faraway, 2006).

In this study, a Poisson GLM (log link),
Quasi-GLM and Negative Binomial were used,
where the Poisson GLM (log link) was used to
detect overdispersion.

In the Poisson model, the variance equaled

The following formula (Zuur et al., 2009) was
used in the calculation:

0 =— (1)

n-p

Where: D is the residual deviance and n — p
is degrees of freedom. n is the number of
observations, and p is the number of regression
parameters (intercept and slopes) in the model.
If ¢ equals 1, there is no overdispersion and we
have the Poisson GLM; if ¢ is larger than 1,
this is evidence for the suggestion of
overdispersion (Zuur et al., 2009), the Quasi-
Poisson GLM and Negative Binomial models

¢u, with mean u and dispersion parameter ¢. were used:
log(u;) = Po + ax + B1x1;i + B2Xzi + B3xs; + Paxs; + log(time;) ()
or p; = exp(Bo + ay + B1x1; + Paxa; + Paxz; + Paxs; + log(time;)) (3)

Where:

x1; to x4 are independent variables of the i
subplot (DBH, BALupior, BALsana, N) and oy is
the effect of province k (k= 1, 2, 3), oy = 0 for
Ha Tinh;

Do to B and the a; are the parameters to be
estimated;

log(time;) is an offset factor.

To estimate the regression parameters of the
GLM, a maximum likelihood estimation was
used (Zuur et al., 2013). The procedure for
selecting Poisson, Quasi-Poisson, and Negative

Binomial models followed Zuur et al. (2009).
- Generalized linear mixed model (GLMM)
Generalized linear mixed models are an
extension of a GLM in which the linear
predictor contains random effects in addition to
the fixed effects.
account  for  the

The random effects can
correlation  between
observations from the same plot in a province.
In this study, a random plot effect was added to
the intercept (equation 4), the slope (equation
5), or both intercept and slope (equation 6) of

each model. The general equation is as follows:

log(ui]-) = (ﬁo + b]-) + ay + p1.x1ij + p2.x2ij + 3. x3ij + f4. x4ij + log(time;;) (4)
log(pij) = Bo + ay + (B1 + by;).x1ij + (B2 + byj). x2ij + (B3 + bs;).x3ij + (B4 +

by;).x4ij + log(time;;)

)

log(pij) = (Bo + bj) + ay + (BL + by;).x1ij + (B2 + byj).x2ij + (B3 + bs;).x3ij + (B4 +

by;). x4ij + log(time;;)

To assess goodness of fit of the data in the
GLM and GLMM models, Pearson’s y* was
used. The parameter estimations for the
GLMM in this chapter were fitted with
glmmPQL in “MASS” package available from
the open source statistical software R.

All hypothesis testing was performed at the
o. = 0.05 significance level.

3. RESULTS

(6)

3.1. Results of the GLM

A total of 1323 dead trees belonging to 189
species were counted at the four locations. The
number of dead trees for all species and all
important species counted per plot ranged from
21 to 221 and from 10 to 133 respectively.
This was in correspondence with the number
of species, which was respectively, from 17 to
58 and from 8 to 21 (Table 1).
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Table 1. Descriptive statistics of the mortality data used for the model development

All tree species All important tree

Province  Plot No. DBH  Stand bzasal species
trees (cm) area (m’/ha) No. dead No. No. dead No.
trees species trees species
1 416 20.95 18.65 21 17 10 8
Ha Tinh 2 352 19.95 13.84 69 33 33 9
391 19.05 15.54 66 37 25 9
Total 156 66 68 14
_ 4 932 17.35 33.04 154 44 109 21
IT{hu‘;a Thien 855  18.20 33.50 77 41 45 19
6 1092 16.53 34.72 190 54 133 21
Total 421 73 287 21
7 1151 16.05 31.01 221 57 130 17
Binh Dinh 967 16.62 31.72 184 58 108 17
9 893 18.34 32.44 96 43 47 12
Total 501 86 285 17
10 800 17.53 28.95 35 18 25
Egznh 11 782 17.52 24.46 82 27 59
12 901 17.47 28.73 128 27 99 11
Toal 245 42 183 11
Total (4 prov.) 1323 189 823 49

The fitted Poisson GLM model for two

and all
important tree species) supported evidence for

species groups (all tree species
overdispersion through the ratio of deviance to
degrees of freedom larger than 1 (2.79 and
2.38, respectively). Thus, we refitted the data
to correct the standard errors using Quasi-
Poisson and Negative Binomial GLMs.

The estimated parameters, standard errors,
and the p-values of Poisson, Quasi-Poisson,
and Negative Binomial models are represented
in table 2. The deviance across all species and
all important species was the lowest when
analyzed with a Negative Binomial GLM,
leading us to conclude that the Negative
Binomial model was preferrable over the
The

Negative Binomial GLM is given as follows:

Poisson and Quasi-Poisson models.

For all species:
log(py) = Bo + ay + P1BALgtanai + log(time)(7)
and for all important species:
log(w;) = Bo + ay + B1DBH; + B, BALgtanai +
+ log(time;) (®)
In the same way, the Negative Binomial
GLM was the selected model for three

important species (Syzygium wightianum,
Diospyros sylvatica and Nephelium
melliferum) spread over three or four
provinces:

S. wightianum:
log(u) = Bo + i + FyBALgyanai + og(time; )
D. sylvatica:

log(u;) = Bo + ay + log(time;) (10)
N. melliferum:
log(u;) = Bo + log(time;) (1D

Estimated parameters and p-value values of
the Poisson, Quasi-Poisson and Negative
Binomial equations are shown in table 2.
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Table 2. GLM (Poisson, Quasi-Poisson, Negative Binomial) results for standing dead trees (0 ‘***” 0.001 ‘**> 0.01 ‘*’ 0.05)

Objects Variables Paramete Poisson Quasi-Poisson Negative Binomial
rs Parameter estimates Pr(>|z|) Parameter estimates Pr(>|z|) Parameter estimates Pr(>|z|)

Intercept So 0.9764 0.0152* 0.3103 0.614253 0.4251 0.4287
DBH P -0.0306 0.0019 ** - - - -
BAL 44 S -0.0969  1.02e-05 *** -0.0999 0.010019 * -0.1082 0.0012 **
Alltree N i3 -0.0075 0.0046 ** - - - -
species Thua Thien Hue 2.8502  5.10e-12 *** 2.7961  0.000130 *** 2.9610  1.73e-06 ***
Binh Dinh ax 2.8215 2.68e-14 *** 2.7672  2.39e-05 *** 29166  1.33e-07 ***
Khanh Hoa 1.6269  3.19e-09 *** 1.6007  0.000901 *** 1.7165  2.99e-05 ***
AIC 1684.3 NA 1457.9
Deviance 816.81 831.72 322.56
Intercept So -0.1060 0.8359 -1.2507 0.0033 ** 0.1144 0.8782
DBH e -0.0433 0.0004 *** -0.0429 0.0280 * -0.0396 0.0287 *
All BAL g4 S -0.0718 0.0095 ** - - -0.0910 0.0245 *
important  Thua Thien Hue 2.6382  3.24e-07 *** 1.3537  2.24e-09 *** 3.0239  5.53e-05 ***
tree Binh Dinh ax 24632  1.05e-07 *** 1.3239  6.41e-09 *** 2.7783  3.51e-05 ***
species  Khanh Hoa 1.7083  8.98e-07 *** 0.8861 0.0002 *** 1.9593  9.33e-05 ***
AIC 1389.9 NA 1233.6
Deviance 700.32 706.97 319.22
Intercept So -2.3011 0.0512. -2.3011 0.0615. -2.2846 0.0566.
BALgna B -0.1859 0.0059** -0.1859 0.0081** -0.1869 0.0063**
S. Thua Thien Hue 54731  6.58e-05%** 54731 0.0002°%** 54926  8.15e-05***
wightian  Binh Dinh ax 4.7208 0.0002%** 4.7208 0.0004*** 4.7376 0.0002***
um Khanh Hoa 4.7277  8.96e-07*** 4.7277 3.48e-06%*** 4.7409  1.21e-06***
AIC 375.95 NA 377.85
Deviance 216.95 216.95 210.84
Intercept So -6.5974  6.72e-11%*** -6.310 6.69e-08*** -6.3090  4.12e-10***
BAL g0 e 0.4233 0.0384* - - - -
D. Binh Dinh 2.8643 0.0054** 3.135 0.0071** 3.1370 0.0026**
sylvatica  Khanh Hoa i 2.9082 0.0047** 3.135 0.0071** 3.1280 0.0027**
AIC 235.37 NA 231.26
Deviance 152.10 155.85 106.08
N. Intercept So -4.1127 <2e-16*** -4.1127 <2e-16%** -4.1101 <2e-16***
melliferu AIC 176.37 NA 176.36
m Deviance 124.77 124.77 98.79
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From the Negative Binomial model output,
the coefficient of BAL,q was always negative
(all species, all important species, and S.
wightianum) denoting that the number of dead
trees declined as the stand basal area became
larger, or O (i.e. nonsignificant) for the other
two species (Table 2). Similarly, the number of
dead trees of all important species decreased
with an increasing DBH, indicating a higher
number of dead trees among small, as opposed
to larger trees. This number should rise in age-
related senescence as the tree becomes older;
however, the data in our model did not
demonstate this relationship. The number of
dead trees for the two groups and S.
wightianum was found to be the highest in

For all species (with k = 2.487)

Ha Tinh: log(u;/time;) = 0.4251 — 0.1082BALgtgnai

log(y;/time;) = 0.4251 — 0.1082BALggng; + 2.9610
Binh Dinh: log(y;/time;) = 0.4251 — 0.1082BALgtqnai + 2.9166
Khanh Hoa: log(u;/time;) = 0.4251 — 0.1082BALgtgnqi + 1.7165

Thua Thien Hue:

For all important species (with £ = 1.993):

Ha Tinh: log(u;/time;) = 0.1144 — 0.0396DBH; — 0.0910BAL;qna;

Thua Thien Hue:

log(y;/time;) = 0.1144 — 0.0396DBH; — 0.0910BAL;qng; + 3.0239
Binh Dinh: log(y;/time;) = 0.1144 — 0.0396DBH; — 0.0910BALggna; + 2.7783
Khanh Hoa:log(u;/time;) = 0.1144 — 0.0396DBH; — 0.0910BAL,qng; + 1.9593

For S. wightianum (k= 13.786):

Ha Tinh: log(u; /time;) = —2.2846 — 0.1869BALg;4nai

Thua Thien Hue: log(u;/time;) = —2.2846 — 0.1869BALtqnqi + 54926
Binh Dinh: log(y;/time;) = —2.2846 — 0.1869BALqna; + 4.7376
Khanh Hoa: log(u;/time;) = —2.2846 — 0.1869BALgqnq; + 4.7409

For D. sylvatica (k= 0.667):
Ha Tinh: log(y;/time;) = —6.3090

Binh Dinh: log(y;/time;) = —6.3090 + 3.1370
Khanh Hoa: log(u;/time;) = —6.3090 + 3.1280
and for N. melliferum (k= 0.772): log(u;/time;) = —4.1101

3.2. Results of the GLMM

The significant negative effects of the DBH
(for the dead trees of all important species) and
BALgynq (for the dead trees of two species
groups) as predicted by the Negative Binomial
GLM became insignificant under the Negative

Thua Thien Hue in comparison with Ha Tinh,
Binh Dinh, and Khanh Hoa. Similarly, D.
sylvatica, which appeared in three locations,
had a much larger number of dead trees in
Binh Dinh and Khanh Hoa than in Ha Tinh.

As mentioned above, for dealing with
different time intervals of each plot in each
province, adding an offset variable (as
log(time)) for the model. To avoid plotting two
lines in each location, we calculate the annual
number of recruits per province. Thus, the
annual number of dead trees can be estimated
using the Negative Binomial GLM for all
species, for all important species per province
and for four important species occurring on all
plots in three/four locations are:

(12)
(13)
(14)
(15)

(16)

(17)
(18)
(19)

(20)
21
(22)
(23)

(24)
(25)
(26)
27

Binomial GLMM, leading to removal of those
variables from the model. Thus, for all species
and all important species, the respective fixed
effects models (7) and (8), were compared to
the following mixed effects models:
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log(ui]-) = (,BO + b]-) + ay + log(time;;) (28)
log(uij) = (,BO + bj) + (ay + byj) + log(time;;) (29)
log(uij) = Bo + (ax + by;) + log(time;;) (30)

For S. wightianum, the fixed effects model (3.3) was compared to four mixed effects models:

log(uij) = (Bo + bj) + B1BALggnaij + ay + log(time;;) (31)
log(uij) = Bo + (B1 + b1;)BALstanaij + o + log(time;;) (32)
log(uij) = (Bo + bj) + B1BALgranai; + (ay + by;) + log(time;;) (33)
log(pij) = Bo + B1BALspanaij + (ax + by;j) + log(time;;) (34)

While for D. sylvatica, the fixed effects
model (10), along with candidate mixed
effects models (28), (29), and (30) were
assessed, and for N. melliferum, the fixed
effects model (11) was compared to only one
mixed effects model (35):

log(ui]-) = (Bo + bj) + log(time;;) (35)

Pearson’s y° values of fixed and mixed
models for predicting the number of dead trees
across all species, all important species, one
important species (S. wightianum) occurring in
four, and two others (D. sylvatica, N.
melliferum) found in three locations are
presented in table 3.

Table 3. A comparison of Pearson’s 7 values between the fixed effects model
and the mixed effects models. Selected models are bolded

Pearson’s
Objects n Equation Model specification Negative Binomial
GLMM
3.1 Fixed effects model (GLM) 330.35
3.22 FM + plot intercept 289.50
Alltree species 300 323 LM *plotintercept  plot 289.55
slope (provincecode)
FM + plot slope
3.24 (provincecode) 289.55
3.2 Fixed effects model (GLM) 324.64
3.22 FM + plot intercept 289.59
All 1mpoﬁant tree 300 323 FM + plot mtercept + plot 289 68
species slope (provincecode)
FM + plot slope
3.24 (provincecode) 289.68
33 Fixed effects model (GLM) 312.14
3.25 FM + plot intercept 300.00
3.26 FM + plot slope (BALguna) 300.00
S. wightianum 300 i
g 397 FM + plot 1ptercept + plot 29813
slope (provincecode)
FM + plot slope
3.28 (provincecode) 298.13
34 Fixed effects model (GLM) 216.80
3.22 FM + plot intercept 225.00
D.sylvatica 225 323 [ M plotintercept + plot 224.99
slope (provincecode)
FM + plot slope
3.24 (provincecode) 224.99
N melli 5 3.5 Fixed effects model (GLM) 235.47
- melliferum 329  FM + plot intercept 223.50

JOURNAL OF FORESTRY SCIENCE AND TECHNOLOGY NO. 5 -2018 9



Silviculture

Table 3 presents a comparison of selected
models based on Pearson’s #* values. Here, we
see that the Pearson’s * statistic for the fixed
model is significantly larger than that of mixed
effects model, with the exception of one
important species appearing in three places (D.
sylvatica). The Negative Binomial GLMM
performed better than the Negative Binomial
GLM. In similar fashion to the recruitment
model, the mixed models with random
intercept/random slope (provincecode) was not
different from the mixed models with random
slope (provincecode) effects. Therefore, the
mixed model with a random slope was chosen
for S. wightianum for it was simpler, while the
mixed model with random intercept was
selected as the equation for the direct
prediction of dead trees across each of the two
species groups, and for N. melliferum, because
it had the smallest Pearson’s »* value (Table
3). For D. sylvatica, the fixed model using only
the provincecode as a predictor (Equation 3.4)
was used.

The summary statistics for the parameter
estimations, standard deviation errors, and the
p-values for the Negative Binomial GLMM are
reported in table 4. In general, for the two
species groups, the number of dead trees in
Thua Thien Hue and Binh Dinh was much
greater than that in Ha Tinh, with the single
exception of Khanh Hoa, where there was no
significant difference when compared with Ha
Tinh (p > 0.05). For S. wightianum, in Thua
Thien Hue, Binh Dinh, and Khanh Hoa were
significantly higher numbers of mortality in
comparison with Ha Tinh.

For N. melliferum, there was no difference
in the number of both recruits and dead trees in
three provinces Ha Tinh, Binh Dinh, and
Khanh Hoa.

The variance component of the random plot
effects in Table 4 was rather small (from 7.22%
to 25.77%); however, the random effect
demonstrated evidence of unexplained variation
at the plot level and provided a suitable
adjustment for dispersion (the overdispersion
parameter was more or less 1).

4. DISCUSSION

The Negative Binomial regression for the
mortality model expressed in this paper used
variables BALg,,q and provinceocde for all
species, and DBH, BALg,q and provincecode
for all important species as predictors in
predicting mortality. The DBH had a negative
sign, resulting in the high mortality of small
diameter trees and suggesting that suppressed
trees are more likely to be eliminated from
stand level competition (Adame et al., 2010);
the negative DBH coefficient also indicated
that stand mortality is more likely in forest
stands with many small trees as compared to
those with larger trees (Juknys et al., 2000).
This result was supported by Zhang et al
(2014) who likewise found that stand mortality
was negatively associated with a stand
arithmetic mean diameter among Chinese
pines (Pinus tabulaeformis).

The stand basal area was suggested as a
measure of two-sided competition that can take
into account both the vertical competition for
light and the horizontal competition for rooting
space, water, and nutrients (Yang et al., 2003).
This indicator is a good measure of stand
crowding because it accounts for both tree size
and density. Trees in a stand with a larger basal
area will experience more competition than
those in another stand with a smaller stand
basal area (Yang et al., 2003). The number of
dead trees should grow along with the increase
in the stand basal area as a result of
competition pressure. In this study, however,
the negative coefficient of the stand basal area
demonstrated that with an increasing stand
basal area, the number of dead trees decreased.
This may imply that inter-specific competition
does not cause tree mortality for these stands.
Another study from Bravo et al. (2001) found
that stand basal area was an insignificant
predictor of Douglas-fir mortality across a
range of stands.

Plot level random effects on mortality
models can address some of the unexplained
variation in these processes due to unobserved
plot level wvariables, which included
topography, soil, microclimate, nutrients, and
moisture (Ma et al., 2013).
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Table 4. Parameter estimates for the Negative Binomial GLMM across all species, all important species,
and important species occurring in four or three provinces

Fixed effects Variance components % . L.
o variation . .
. . . Overdispersion
Objects Equation explained parameter
Variables Parameters Par.a meter  Std- Pr>lz)  Granin Cransiop res by the plot
estimates error
Intercept Lo -1.3576  0.2586  0.0000
) Thua Thien Hue 1.0295  0.3600  0.0212
All species 5.56 Binh Dinh 12125 03595 00097 0-1661 - 0.8138 16.95 0.9814
Ok
Khanh Hoa 0.4374 03627  0.2623
All Intercept So -2.1680 0.3048 0.0000
important 5.56 Thua Thien Hue 1.4325  0.4192  0.0091  0.2200 - 0.7779 22.04 0.9817
species Binh Dinh O 1.4350  0.4191 0.0090
Khanh Hoa 0.9419 04218  0.0560
Intercept Lo -2.5911 1.2212 0.0347
S BALstand S -0.1670  0.0696  0.0475
wightianum ~ >°% Thua Thien Hue 51282 14038 0.0084 - 03476 1.OOI3 2577 1.0141
Binh Dinh % 4.2865 1.3349  0.0152
Khanh Hoa 45158  0.9926  0.0026
].V' 5.63 Intercept o -4.1223 0.2257  0.0000 0.0762 - 0.9793 7.22 1.0022
melliferum
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5. CONCLUSION

For this study, overdispersion becomes an
issue as a result of the huge number of zero
counts. Because it can affect the regression
parameters, overdispersion is dealt with here
by using a generalized linear mixed model,
treating a plot factor as a random effect and
integrating the evoked overdispersion by this
factor into the model. The Negative Binomial
GLMM therefore appeared to be a suitable
model due to its ability to capture
overdispersion and within-plot correlation.
This
statistical models are effective in tackling the

analysis illustrates that appropriate

challenge of modeling mortality and the
association of dead trees with data that has a
high frequency of zero captures.
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XAY DUNG MO HINH CAY CHET CHO RUNG TU NHIEN TRANG THATI III
O 4 TINH MIEN TRUNG VIET NAM

Cao Thi Thu Hién
Truong Dai hoc Lam nghiép

SUMMARY

Cay chét trong nghién ctru nay 1a nhitng ciy chét dimg gitra 2 chu ky do. S6 lidu tir 300 phan 6 ciia 12 6 do dém
(ODD) dugc dung dé xay dung mé hinh cdy chét. Bién phu thudc 13 sé cay chét/phan 6. Két qua cho thiy co
thé dung mé hinh tuyén tinh tong quat va mo hinh tuyén tinh tong quat hdn hop dé mé phong vi hai mo hinh
nay giai quyét dugc van dé phan tan ciia s§ lidu. V&i mo hinh tuyén tinh tong quat (GLM), phuong trinh
Negative Binomial GLM 1a phu hop nhit dé dwa doan sé cdy chét cho 3 nhom. Puong kinh, tiét dién ngang
lam phan va bién phan nhom “tinh” 1a cac bién c6 anh huong rd rang nhit téi mo hinh dy doan cdy chét. Tir
bién phan nhom cho thiy s6 cdy chét & cac tinh 1a khac nhau, sé ciy chét ciia nhom 1 va nhém 2 nhiéu nhit &
Thira Thién Hué va it nhit 12 & Ha Tinh. V6i mé hinh tuyén tinh téng quat hdn hop (GLMM), ham Negative
Binomial GLMM da loai bdé dugc nhiing gia tri phan tin. GLMM véi hiéu Gng ngﬁu nhién la ODD cho hé $6 tu
do dugc Iya chon dé dy doan s cay chét cho nhom 1, nhém 2 va loai Trudng vai. GLMM véi hiéu ing ngiu
nhién la ODD cho hé $6 hoi quy dugc lua chon dé du doan $6 cay chét cho Tram tra‘ing.

Tir khoa: M6 hinh cay chét, Negative Binomial GLM, phwong trinh tuyén tinh téng quéat, phuwong trinh
tuyén tinh tong quat hén hop, rirng mwa nhiét déi.
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